Volume – 04, Issue – 01, Page : 01-20

Behavioral Economics and Consumer Decision-Making in the Age of Artificial Intelligence (AI), Data Science, Business Analytics, and Internet of Things (IoT)

Author/s

Yuki Haruto Yamamoto

Digital Object Identifier (DOI)

10.56106/ssc.2024.005

Date of Publication

3rd May 2024

Abstract :
This study explores the impact of advanced technologies, including Artificial Intelligence (AI), data science, business analytics, and the Internet of Things (IoT), on consumer decision-making in Japan and Singapore. The research examines how these technologies shape consumer behavior by interacting with cognitive biases, decision-making heuristics, and cultural factors. A qualitative, exploratory approach was employed, involving in-depth interviews, focus groups, and observational studies with Japanese and Singaporean consumers actively engaged with AI-driven personalization, dynamic pricing, targeted advertising, and IoT devices. The findings reveal that AI-driven personalization often reinforces cognitive biases such as confirmation bias and choice overload, while dynamic pricing strategies exploit loss aversion, prompting impulsive buying behavior. IoT devices were found to influence decision-making under uncertainty by providing real-time feedback and automated adjustments that reduce cognitive load. The study highlights significant cultural differences, with Japanese consumers exhibiting a cautious and trust-oriented approach to technology use, while Singaporean consumers demonstrate a pragmatic and efficiency-driven engagement. These insights underscore the importance of culturally informed approaches to technology adoption and emphasize the need for ethical guidelines to address potential consumer manipulation and data privacy concerns. The research provides valuable implications for businesses, marketers, and policymakers, advocating for transparent, fair, and culturally sensitive strategies that enhance consumer engagement without compromising autonomy or trust.

Keywords :
Artificial Intelligence, Behavioral Economics, Business Analytics, Cognitive Biases, Consumer Behav-ior, Consumer Decision-Making, Data Science, Dynamic Pricing, Internet of Things, Personalized Marketing.

References :

  • Abrardi, L., Cambini, C., & Rondi, L. (2022). Artificial intelligence, firms and consumer behavior: A survey. Journal of Economic Surveys36(4), 969-991.
  • Adams, D., & Krulicky, T. (2021). Artificial intelligence-driven big data analytics, real-time sensor networks, and product decision-making information systems in sustainable manufacturing internet of things. Economics, Management and Financial Markets16(3), 81-93.
  • Akinsola, J. E. T., Adeagbo, M. A., Oladapo, K. A., Akinsehinde, S. A., & Onipede, F. O. (2022). Artificial intelligence emergence in disruptive technology. In Computational intelligence and data sciences (pp. 63-90). CRC Press.
  • Alahi, M. E. E., Sukkuea, A., Tina, F. W., Nag, A., Kurdthongmee, W., Suwannarat, K., & Mukhopadhyay, S. C. (2023). Integration of IoT-enabled technologies and artificial intelligence (AI) for smart city scenario: recent advancements and future trends. Sensors23(11), 5206.
  • Amin, F., Abbasi, R., Mateen, A., Ali Abid, M., & Khan, S. (2022). A step toward next-generation advancements in the internet of things technologies. Sensors22(20), 8072.
  • Andronie, M., Iatagan, M., Uță, C., Hurloiu, I., Dijmărescu, A., & Dijmărescu, I. (2023). Big data management algorithms in artificial Internet of Things-based fintech. Oeconomia Copernicana14(3), 769-793.
  • Andronie, M., Lăzăroiu, G., Iatagan, M., Uță, C., Ștefănescu, R., & Cocoșatu, M. (2021). Artificial intelligence-based decision-making algorithms, internet of things sensing networks, and deep learning-assisted smart process management in cyber-physical production systems. Electronics10(20), 2497.
  • Ataei Kachouei, M., Kaushik, A., & Ali, M. A. (2023). Internet of things‐enabled food and plant sensors to empower sustainability. Advanced Intelligent Systems5(12), 2300321.
  • Bag, S., Gupta, S., Kumar, A., & Sivarajah, U. (2021). An integrated artificial intelligence framework for knowledge creation and B2B marketing rational decision making for improving firm performance. Industrial marketing management92, 178-189.
  • Blake, R., & Michalikova, K. F. (2021). Deep learning-based sensing technologies, artificial intelligence-based decision-making algorithms, and big geospatial data analytics in cognitive internet of things. Analysis and Metaphysics20, 159-173.
  • Bokhari, S. A. A., & Myeong, S. (2023). The impact of AI applications on smart decision-making in smart cities as mediated by the Internet of Things and smart governance. IEEE Access11, 120827-120844.
  • Bzai, J., Alam, F., Dhafer, A., Bojović, M., Altowaijri, S. M., Niazi, I. K., & Mehmood, R. (2022). Machine learning-enabled internet of things (iot): Data, applications, and industry perspective. Electronics11(17), 2676.
  • Chander, B., Pal, S., De, D., & Buyya, R. (2022). Artificial intelligence-based internet of things for industry 5.0. Artificial intelligence-based internet of things systems, 3-45.
  • Chaudhary, K., & Alam, M. (2022). Big data analytics: applications in business and marketing. Auerbach Publications.
  • Chauhan, R., & Kumar, S. (2021, October). Packet loss prediction using artificial intelligence unified with big data analytics, internet of things and cloud computing technologies. In 2021 5th International Conference on Information Systems and Computer Networks (ISCON) (pp. 01-06). IEEE.
  • Chkoniya, V. (2023). Challenges in decoding consumer behavior with data science.
  • De Mauro, A., Sestino, A., & Bacconi, A. (2022). Machine learning and artificial intelligence use in marketing: a general taxonomy. Italian Journal of Marketing2022(4), 439-457.
  • Dwivedi, R., Nerur, S., & Balijepally, V. (2023). Exploring artificial intelligence and big data scholarship in information systems: A citation, bibliographic coupling, and co-word analysis. International Journal of Information Management Data Insights3(2), 100185.
  • Eboigbe, E. O., Farayola, O. A., Olatoye, F. O., Nnabugwu, O. C., & Daraojimba, C. (2023). Business intelligence transformation through AI and data analytics. Engineering Science & Technology Journal4(5), 285-307.
  • Elayan, H., Aloqaily, M., Karray, F., & Guizani, M. (2022). Internet of behavior and explainable ai systems for influencing iot behavior. IEEE Network37(1), 62-68.
  • Esenogho, E., Djouani, K., & Kurien, A. M. (2022). Integrating artificial intelligence Internet of Things and 5G for next-generation smartgrid: A survey of trends challenges and prospect. Ieee Access10, 4794-4831.
  • Farrokhi, A., Farahbakhsh, R., Rezazadeh, J., & Minerva, R. (2021). Application of Internet of Things and artificial intelligence for smart fitness: A survey. Computer Networks189, 107859.
  • Gad-Elrab, A. A. (2021). Modern business intelligence: Big data analytics and artificial intelligence for creating the data-driven value. In E-Business-Higher Education and Intelligence Applications. IntechOpen.
  • George, J. (2023). Harnessing the power of real-time analytics and reverse ETL: Strategies for unlocking data-driven insights and enhancing decision-making. Available at SSRN 4963391.
  • Gerlick, J. A., & Liozu, S. M. (2020). Ethical and legal considerations of artificial intelligence and algorithmic decision-making in personalized pricing. Journal of Revenue and Pricing Management19, 85-98.
  • Giuggioli, G., & Pellegrini, M. M. (2023). Artificial intelligence as an enabler for entrepreneurs: a systematic literature review and an agenda for future research. International Journal of Entrepreneurial Behavior & Research29(4), 816-837.
  • Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks3, 119-132.
  • Han, M. (2023). Consumer Behavior Analysis and Personalized Marketing Strategies for the Internet of Things. Revista Ibérica de Sistemas e Tecnologias de Informação, (E63), 367-376.
  • Harnessing business analytics for gaining competitive advantage in emerging markets: A systematic review of approaches and outcomes. International journal of management & entrepreneurship research6(3), 838-862.
  • Hicham, N., Nassera, H., & Karim, S. (2023). Strategic framework for leveraging artificial intelligence in future marketing decision-making. Journal of Intelligent Management Decision2(3), 139-150.
  • Hicham, N., Nassera, H., & Karim, S. (2023). Strategic framework for leveraging artificial intelligence in future marketing decision-making. Journal of Intelligent Management Decision2(3), 139-150.
  • Hopkins, E., & Siekelova, A. (2021). Internet of things sensing networks, smart manufacturing big data, and digitized mass production in sustainable Industry 4.0. Economics, Management & Financial Markets16(4).
  • Jagatheesaperumal, S. K., Pham, Q. V., Ruby, R., Yang, Z., Xu, C., & Zhang, Z. (2022). Explainable AI over the Internet of Things (IoT): Overview, state-of-the-art and future directions. IEEE Open Journal of the Communications Society3, 2106-2136.
  • Jagatheesaperumal, S. K., Rahouti, M., Ahmad, K., Al-Fuqaha, A., & Guizani, M. (2021). The duo of artificial intelligence and big data for industry 4.0: Applications, techniques, challenges, and future research directions. IEEE Internet of Things Journal9(15), 12861-12885.
  • Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Artificial intelligence applications for industry 4.0: A literature-based study. Journal of Industrial Integration and Management7(01), 83-111.
  • Kaponis, A., & Maragoudakis, M. (2022, September). Data Analysis in Digital Marketing using Machine learning and Artificial Intelligence Techniques, Ethical and Legal Dimensions, State of the Art. In Proceedings of the 12th Hellenic Conference on Artificial Intelligence (pp. 1-9).
  • Kaushik, P. (2022). Role and application of artificial intelligence in business analytics: a critical evaluation. International Journal for Global Academic & Scientific Research1(3), 01-11.
  • Khan, Y., Su’ud, M. B. M., Alam, M. M., Ahmad, S. F., Ahmad, A. Y. B., & Khan, N. (2022). Application of internet of things (IoT) in sustainable supply chain management. Sustainability15(1), 694.
  • Khargharia, H. S., Rehman, M. H. U., Banerjee, A., Montori, F., Forkan, A. R. M., & Jayaraman, P. P. (2023). Towards marketing 4.0: Vision and survey on the role of IoT and data science. Societies13(4), 100.
  • Kliestik, T., Kovalova, E., & Lăzăroiu, G. (2022). Cognitive decision-making algorithms in data-driven retail intelligence: consumer sentiments, choices, and shopping behaviors. Journal of Self-Governance and Management Economics10(1), 30-42.
  • Kliestik, T., Nica, E., Durana, P., & Popescu, G. H. (2023). Artificial intelligence-based predictive maintenance, time-sensitive networking, and big data-driven algorithmic decision-making in the economics of Industrial Internet of Things. Oeconomia Copernicana14(4), 1097-1138.
  • Kök, I., Okay, F. Y., Muyanlı, Ö., & Özdemir, S. (2023). Explainable artificial intelligence (xai) for internet of things: a survey. IEEE Internet of Things Journal10(16), 14764-14779.
  • Kumar, D., Singh, R. K., Mishra, R., & Wamba, S. F. (2022). Applications of the internet of things for optimizing warehousing and logistics operations: A systematic literature review and future research directions. Computers & Industrial Engineering171, 108455.
  • Kumar, I., Rawat, J., Mohd, N., & Husain, S. (2021). Opportunities of artificial intelligence and machine learning in the food industry. Journal of Food Quality2021(1), 4535567.
  • Kumar, M., Kumar, A., Verma, S., Bhattacharya, P., Ghimire, D., Kim, S. H., & Hosen, A. S. (2023). Healthcare Internet of Things (H-IoT): Current trends, future prospects, applications, challenges, and security issues. Electronics12(9), 2050.
  • Kumar, V. M., Vijayaraghavan, P., Meshram, V. V., Sharma, M. K., MS, N., & Kumar, R. (2023, November). Transforming Data Analysis through AI-Powered Data Science. In 2023 2nd International Conference on Futuristic Technologies (INCOFT) (pp. 1-5). IEEE.
  • Kuzlu, M., Fair, C., & Guler, O. (2021). Role of artificial intelligence in the Internet of Things (IoT) cybersecurity. Discover Internet of things1(1), 7.
  • Lazaroiu, G., Androniceanu, A., Grecu, I., Grecu, G., & Neguriță, O. (2022). Artificial intelligence-based decision-making algorithms, Internet of Things sensing networks, and sustainable cyber-physical management systems in big data-driven cognitive manufacturing. Oeconomia Copernicana13(4), 1047-1080.
  • Lăzăroiu, G., Kliestik, T., & Novak, A. (2021). Internet of things smart devices, industrial artificial intelligence, and real-time sensor networks in sustainable cyber-physical production systems. Journal of Self-Governance and Management Economics9(1), 20-30.
  • Ljepava, N. (2022). AI-enabled marketing solutions in Marketing Decision making: AI application in different stages of marketing process. Tem Journal11(3), 1308-1315.
  • Lukita, C., Pangilinan, G. A., Chakim, M. H. R., & Saputra, D. B. (2023). Examining the impact of artificial intelligence and internet of things on smart tourism destinations: A comprehensive study. Aptisi Transactions on Technopreneurship (ATT)5(2sp), 135-145.
  • Machireddy, J. R. (2023). Data science and business analytics approaches to financial wellbeing: Modeling consumer habits and identifying at-risk individuals in financial services. Journal of Applied Big Data Analytics, Decision-Making, and Predictive Modelling Systems7(12), 1-18.
  • Manduva, V. C. M. (2022). Leveraging AI, ML, and DL for Innovative Business Strategies: A Comprehensive Exploration. International Journal of Modern Computing5(1), 62-77.
  • Mishra, S., & Tyagi, A. K. (2022). The role of machine learning techniques in internet of things-based cloud applications. Artificial intelligence-based internet of things systems, 105-135.
  • Mustapha, U. F., Alhassan, A. W., Jiang, D. N., & Li, G. L. (2021). Sustainable aquaculture development: a review on the roles of cloud computing, internet of things and artificial intelligence (CIA). Reviews in Aquaculture13(4), 2076-2091.
  • Najafi, S. E., Nozari, H., & Edalatpanah, S. A. (2022). Artificial Intelligence of Things (AIoT) and Industry 4.0–Based Supply Chain (FMCG Industry). A roadmap for enabling industry 4.0 by artificial intelligence, 31-41.
  • Nguyen, D. K., Sermpinis, G., & Stasinakis, C. (2023). Big data, artificial intelligence and machine learning: A transformative symbiosis in favour of financial technology. European Financial Management29(2), 517-548.
  • Nica, E., & Stehel, V. (2021). Internet of things sensing networks, artificial intelligence-based decision-making algorithms, and real-time process monitoring in sustainable industry 4.0. Journal of Self-Governance and Management Economics9(3), 35-47.
  • Nourani, C. F. (2022). Artificial Intelligence and Computing Logic: Cognitive Technology for AI Business Analytics. Apple Academic Press.
  • Novak, A., Bennett, D., & Kliestik, T. (2021). Product decision-making information systems, real-time sensor networks, and artificial intelligence-driven big data analytics in sustainable Industry 4.0. Economics, management and financial markets16(2), 62-72.
  • Ohalete, N. C., Aderibigbe, A. O., Ani, E. C., Ohenhen, P. E., & Akinoso, A. E. (2023). Data science in energy consumption analysis: A review of AI techniques in identifying patterns and efficiency opportunities. Engineering Science & Technology Journal4(6), 357-380.
  • Pathak, S., & Solanki, V. K. (2021). Impact of internet of things and artificial intelligence on human resource development. Further advances in internet of things in biomedical and cyber physical systems, 239-267.
  • Pei, J. (2020). A survey on data pricing: from economics to data science. IEEE Transactions on knowledge and Data Engineering34(10), 4586-4608.
  • Prasanth, A., Densy, J. V., Surendran, P., & Bindhya, T. (2023). Role of artificial intelligence and business decision making. International Journal of Advanced Computer Science and Applications14(6).
  • Prasanth, A., Densy, J. V., Surendran, P., & Bindhya, T. (2023). Role of artificial intelligence and business decision making. International Journal of Advanced Computer Science and Applications14(6).
  • Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big data1(1), 51-59.
  • Purnama, S., & Sejati, W. (2023). Internet of things, big data, and artificial intelligence in the food and agriculture sector. International Transactions on Artificial Intelligence1(2), 156-174.
  • Radanliev, P., De Roure, D., Van Kleek, M., Santos, O., & Ani, U. (2021). Artificial intelligence in cyber physical systems. AI & society36(3), 783-796.
  • Raheem, F., & Iqbal, N. (2022). Artificial intelligence and machine learning for the industrial internet of things (iiot). In Industrial Internet of Things (pp. 1-20). CRC Press.
  • Rahmani, A. M., Azhir, E., Ali, S., Mohammadi, M., Ahmed, O. H., Ghafour, M. Y., … & Hosseinzadeh, M. (2021). Artificial intelligence approaches and mechanisms for big data analytics: a systematic study. PeerJ Computer Science7, e488.
  • Raja, G. B. (2021). Impact of internet of things, artificial intelligence, and blockchain technology in Industry 4.0. Internet of Things, Artificial Intelligence and Blockchain Technology, 157-178.
  • Rajagopal, N. K., Qureshi, N. I., Durga, S., Ramirez Asis, E. H., Huerta Soto, R. M., Gupta, S. K., & Deepak, S. (2022). Future of business culture: An artificial intelligence‐driven digital framework for organization decision‐making process. Complexity2022(1), 7796507.
  • Rajendran, R., Sharma, P., Saran, N. K., Ray, S., Alanya-Beltran, J., & Tongkachok, K. (2022, February). An exploratory analysis of machine learning adaptability in big data analytics environments: A data aggregation in the age of big data and the internet of things. In 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM) (Vol. 2, pp. 32-36). IEEE.
  • Rane, N. (2023). Enhancing customer loyalty through Artificial Intelligence (AI), Internet of Things (IoT), and Big Data technologies: improving customer satisfaction, engagement, relationship, and experience. Internet of Things (IoT), and Big Data Technologies: Improving Customer Satisfaction, Engagement, Relationship, and Experience (October 13, 2023).
  • Rane, N. (2023). Integrating leading-edge artificial intelligence (AI), internet of things (IOT), and big data technologies for smart and sustainable architecture, engineering and construction (AEC) industry: Challenges and future directions. Engineering and Construction (AEC) Industry: Challenges and Future Directions (September 24, 2023).
  • Reddy, S. R. B. (2021). Predictive Analytics in Customer Relationship Management: Utilizing Big Data and AI to Drive Personalized Marketing Strategies. Australian Journal of Machine Learning Research & Applications1(1), 1-12.
  • Rodriguez-Garcia, P., Li, Y., Lopez-Lopez, D., & Juan, A. A. (2023). Strategic decision making in smart home ecosystems: A review on the use of artificial intelligence and Internet of things. Internet of Things22, 100772.
  • Rodriguez-Rodriguez, I., Rodriguez, J. V., Shirvanizadeh, N., Ortiz, A., & Pardo-Quiles, D. J. (2021). Applications of artificial intelligence, machine learning, big data and the internet of things to the COVID-19 pandemic: A scientometric review using text mining. International Journal of Environmental Research and Public Health18(16), 8578.
  • Rosário, A., Moniz, L. B., & Cruz, R. (2021). Data Science Applied to Marketing: A Literature Review. J. Inf. Sci. Eng.37(5), 1067-1081.
  • Sarker, I. H. (2021). Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. SN Computer Science2(5), 377.
  • Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN computer science2(3), 160.
  • Sarker, I. H. (2022). Smart City Data Science: Towards data-driven smart cities with open research issues. Internet of Things19, 100528.
  • Sarker, I. H. (2023). Machine learning for intelligent data analysis and automation in cybersecurity: current and future prospects. Annals of Data Science10(6), 1473-1498.
  • Sarker, I. H., Hoque, M. M., Uddin, M. K., & Alsanoosy, T. (2021). Mobile data science and intelligent apps: concepts, AI-based modeling and research directions. Mobile Networks and Applications26(1), 285-303.
  • Sarker, I. H., Khan, A. I., Abushark, Y. B., & Alsolami, F. (2023). Internet of things (iot) security intelligence: a comprehensive overview, machine learning solutions and research directions. Mobile Networks and Applications28(1), 296-312.
  • Selvarajan, G. P. (2021). Harnessing AI-Driven Data Mining for Predictive Insights: A Framework for Enhancing Decision-Making in Dynamic Data Environments. International Journal of Creative Research Thoughts9(2), 5476-5486.
  • Sestino, A., & De Mauro, A. (2022). Leveraging artificial intelligence in business: Implications, applications and methods. Technology analysis & strategic management34(1), 16-29.
  • Sharma, A., Sharma, A., Tselykh, A., Bozhenyuk, A., Choudhury, T., Alomar, M. A., & Sánchez-Chero, M. (2023). Artificial intelligence and internet of things oriented sustainable precision farming: Towards modern agriculture. Open Life Sciences18(1), 20220713.
  • Sharma, R., & Villányi, B. (2022). Evaluation of corporate requirements for smart manufacturing systems using predictive analytics. Internet of Things19, 100554.
  • Sharma, S., Gahlawat, V. K., Rahul, K., Mor, R. S., & Malik, M. (2021). Sustainable innovations in the food industry through artificial intelligence and big data analytics. Logistics5(4), 66.
  • Shaw, S., Rowland, Z., & Machova, V. (2021). Internet of Things smart devices, sustainable industrial big data, and artificial intelligence-based decision-making algorithms in cyber-physical system-based manufacturing. Economics, Management and Financial Markets16(2), 106-116.
  • Shelare, S. D., Belkhode, P. N., Nikam, K. C., Jathar, L. D., Shahapurkar, K., Soudagar, M. E. M., & Rehan, M. (2023). Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production. Energy282, 128874.
  • Singh, N., & Adhikari, D. (2023). AI and IoT: A future perspective on inventory management. International Journal for Research in Applied Science and Engineering Technology11(11), 2753-2757.
  • Singh, S., Rajest, S. S., Hadoussa, S., Obaid, A. J., & Regin, R. (Eds.). (2023). Data-driven decision making for long-term business success. IGI Global.
  • Smith, A. (2019). Consumer behaviour and analytics. Routledge.
  • Sousa, M. J., de Barros, G. O., & Tavares, N. (2021). Artificial intelligence trends: Insights for digital economy policymakers. In Information and knowledge in internet of things (pp. 163-186). Cham: Springer International Publishing.
  • Srinadi, N. L. P., Hermawan, D., & Jaya, A. A. N. A. (2023). Advancement of banking and financial services employing artificial intelligence and the internet of things. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications14(1), 106-117.
  • Stadnicka, D., Sęp, J., Amadio, R., Mazzei, D., Tyrovolas, M., Stylios, C., … & Navarro, J. (2022). Industrial needs in the fields of artificial intelligence, Internet of Things and edge computing. Sensors22(12), 4501.
  • Subeesh, A., & Mehta, C. R. (2021). Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture5, 278-291.
  • Sun, J., Gan, W., Chao, H. C., Yu, P. S., & Ding, W. (2023). Internet of behaviors: A survey. IEEE Internet of Things Journal10(13), 11117-11134.
  • Tien, J. M. (2017). Internet of things, real-time decision making, and artificial intelligence. Annals of Data Science4, 149-178.
  • Ubina, N. A., Lan, H. Y., Cheng, S. C., Chang, C. C., Lin, S. S., Zhang, K. X., … & Hsieh, Y. Z. (2023). Digital twin-based intelligent fish farming with Artificial Intelligence Internet of Things (AIoT). Smart agricultural technology5, 100285.
  • Wade, K., & Vochozka, M. (2021). Artificial intelligence data-driven internet of things systems, sustainable industry 4.0 wireless networks, and digitized mass production in cyber-physical smart manufacturing. Journal of Self-Governance and Management Economics9(3), 48-60.
  • Wang, K., Zhao, Y., Gangadhari, R. K., & Li, Z. (2021). Analyzing the adoption challenges of the Internet of things (Iot) and artificial intelligence (ai) for smart cities in china. Sustainability13(19), 10983.
  • Wisetsri, W., Ragesh, S. T., Aarthy, C. C. J., Thakur, V., Pandey, D., & Gulati, K. (2021). Systematic analysis and future research directions in artificial intelligence for marketing. Turkish Journal of Computer and Mathematics Education12(11), 43-55.
  • Zaman, K. (2022). Transformation of marketing decisions through artificial intelligence and digital marketing. Journal of Marketing Strategies4(2), 353-364.
  • Zhang, C. (2021, March). Intelligent Internet of things service based on artificial intelligence technology. In 2021 IEEE 2nd international conference on big data, artificial intelligence and internet of things engineering (ICBAIE) (pp. 731-734). IEEE.
  • Zhang, C., & Lu, Y. (2021). Study on artificial intelligence: The state of the art and future prospects. Journal of Industrial Information Integration23, 100224.



Interact on Social Media

WEB – PAGE COUNTER