

Peer-Reviewed, International, Academic Research Journal

ISSN: 3048-6297

Citation

Thompson, J., & Harris, O. (2025). A Narrative Review of Educational Technology in Higher Education. *Social Science Chronicle*, Vol. 5, Issue - 1, pp. 1-27.

Digital Object Identifier (DOI)

https://doi.org/10.56106/ssc.2025.002

Received - October 18, 2024 Accepted - March 21, 2025 Published - March 28, 2025

Web-Link

All the contents of this peer reviewed article as well as author details are available at http://socialsciencechronicle.com/article-ssc-2025-002

Copyright

The copyright of this article is reserved with the author/s. © 2025, Jack Thompson and Olivia Harris.

This publication is distributed under the terms of Creative Commons Attribution, Non-Commercial, Share Alike 4.0 International License. It permits unrestricted copying and redistribution of this publication in any medium or format.

REVIEW ARTICLE

A Narrative Review of Educational Technology in Higher Education

Jack Thompson¹ and Olivia Harris^{2*}

- ¹University of Melbourne, Melbourne, Australia.
- ² University of New South Wales, Sydney, Australia.

* Corresponding Author

Abstract

This narrative review critically examines the global evolution, integration, and future trajectory of educational technology in higher education. It foregrounds the pivotal role of digital innovation in transforming pedagogical paradigms, institutional strategies, and learner experiences across tertiary education systems. Tracing historical developments from early audiovisual media and computer-assisted instruction to the contemporary infusion of AI and adaptive learning systems, the review situates educational technology as both a catalyst and a consequence of systemic shifts in higher education. It delineates the foundational importance of digital literacy and information literacy as core competencies necessary for navigating increasingly complex learning environments, and assesses how generative AI tools such as ChatGPT are reconfiguring instructional design, assessment integrity, and academic labor. Further, the review explores the principles of digital pedagogy, emphasizing intentional instructional design, learning management systems, interactive tools, and active learning frameworks. It assesses the post-pandemic landscape, where hybrid and HyFlex modalities have become institutional norms, and examines how emergency remote learning has catalyzed structural reforms, pedagogical recalibrations, and policy innovation. The review also anticipates future directions, focusing on ethical governance, inclusive and accessible learning design, personalization through AI-driven adaptivity, and emerging regulatory frameworks. Emphasis is placed on the need for balanced, equity-focused EdTech integration that aligns with institutional missions and safeguards academic values. Synthesizing insights from multidisciplinary literature, global policy reports, and empirical studies, this review advances a comprehensive, densely-argued perspective tailored to academics, policy-makers, workforce development professionals, and digital learning technologists. It concludes that the promise of educational technology in higher education can only be realized through deliberate, ethically-grounded, and contextuallyresponsive strategies that prioritize pedagogy over product, and inclusion over acceleration.

Keywords

Educational Technology, Digital Pedagogy, Generative AI, Digital Literacy, Hybrid Learning, Learning Management Systems, Adaptive Learning, Academic Integrity, EdTech Policy.

1. Introduction

Higher education worldwide has undergone a profound digital transformation in recent decades. Educational technology, encompassing the myriad digital tools, platforms, and pedagogical practices employed in tertiary learning, has moved from a peripheral support role to the very center of modern higher education (Antonenko, 2015; Ahmad et al., 2020; Almaiah et al., 2019; Arnold & Sangrà, 2018). Universities across the globe are investing heavily in online learning infrastructures, data-driven teaching methods and innovative

digital pedagogies to enhance learning outcomes and expand access. This narrative review provides a comprehensive analysis of educational technology in higher education, examining its evolution and current state, the foundational literacies enabling its use, the disruptive advent of generative AI in academia, the principles of digital pedagogy and active learning, the transformations catalyzed by the COVID-19 pandemic, and future trajectories shaped by ethical, inclusive, personalized, and policy considerations. The discussion is grounded in global research literature and educational frameworks, offering an academically rigorous synthesis for scholars, policymakers, technologists, and university professionals. Through dense analysis and critical insights, this review elucidates how digital innovations are reshaping higher education's landscape, while highlighting the challenges and opportunities that lie ahead in harnessing technology for quality, equitable higher learning.

Historical Evolution

The integration of technology into higher education has deep historical roots, with each era introducing new media and tools that incrementally reshaped teaching and learning. In the mid-20th century, educational technology began to emerge formally with the introduction of audiovisual media, educational radio and television programs were broadcast to supplement instruction, and early teaching machines hinted at the potential of automation in learning (Kay & LeSage, 2009; Kumar, 2023; Kucuk et al., 2013; Koehler, Mishra, & Cain, 2013). By the 1950s and 1960s, filmstrips, language laboratories, and televised lectures were increasingly common in universities, reflecting optimism that multimedia could enhance comprehension and reach wider audiences. The advent of computer technology in the 1970s opened a new chapter: computer-assisted instruction (CAI) and mainframe-based training systems (like PLATO and IBM's teaching machines) allowed students to interact with programmed lessons on terminals, laying groundwork for interactive learning outside traditional classrooms. The 1990s then witnessed a revolutionary leap with the widespread adoption of the Internet. Universities established computer labs and began to offer web-assisted courses, marking the rise of online education and popularizing distance learning on a scale previously unimaginable (Kaliisa & Picard, 2017; Kitamura, 2023; Kahu & Nelson, 2018; Kurbanoglu, Akkoyunlu, & Umay, 2006).

With Internet connectivity, email, and early learning management systems, higher education institutions could, for the first time, deliver course content and facilitate discussions in a virtual space, transcending geographical barriers. Entering the 21st century, the growth of broadband, wireless networks, and mobile devices accelerated this evolution: laptops, smartphones, and tablets became ubiquitous on campuses, enabling mobile learning and on-demand access to educational resources. This era also saw the emergence of new paradigms often termed "Education 3.0" or "Education 4.0," characterized by personalized and networked learning experiences leveraging cloud computing, social media, and data analytics. By the 2010s, higher education had embraced Massive Open Online Courses (MOOCs) - free online courses

offered by top universities to millions of learners worldwide, and explored immersive technologies like virtual labs and simulations. The evolution continued into the 2020s with the advent of artificial intelligence (AI) and big data: adaptive learning systems, intelligent tutoring agents, and AI-driven analytics began to further propel educational technology towards "smart education" tailored to individual learner's needs (Kirkwood, 2009; Kline, 2011; Kuh, 2009; Karabulut-Ilgu, Jaramillo Cherrez, & Jahren, 2018). Thus, over roughly seven decades, higher education moved from occasional use of broadcast media to a digitally infused ecosystem, continually adapting each new wave of technology to serve pedagogical aims.

Current Global Landscape

Today, educational technology is firmly entrenched in the global higher education system, though its adoption and impact vary across contexts. Virtually all universities now deploy some form of learning management system (LMS), such as Moodle, Canvas, or Blackboard, as the backbone of their digital infrastructure (Koehler & Mishra, 2005; Keiller & Inglis-Jassiem, 2015; Kong, Deng, & Zhang, 2019; Kuh, Cruce, Shoup, Kinzie, & Gonyea, 2008). These platforms manage course content, discussions, assignments, and assessments online, allowing institutions to offer fully online courses and to enrich campus-based courses with digital supplements. The prevalence of LMS usage underscores how essential such systems have become: by the late 2010s, over 30% of higher education students in the United States were enrolled in at least one online course, and similar trends are evident globally as universities respond to student demand for flexibility and remote learning options. The global scope of EdTech in higher education is illustrated by the massive enrollment in open online education. By 2021, more than 220 million learners worldwide had participated in MOOCs offered through platforms like Coursera and edX.

This reflects not only the scalability of digital education but also its broad appeal beyond traditional campus student populations - including working adults seeking continuous learning and international audiences accessing courses from abroad. Indeed, higher education is arguably the fastestadopting sector for digital technology in education, spurred by intense international competition and the pursuit of innovation (Kara, 2017; Kanniainen et al., 2019; Kuh, Kinzie, Buckley, Bridges, & Hayek, 2006; Kupper & Hafner, 1989). Classrooms in many universities have transformed into technology-enhanced smart classrooms, equipped with highspeed internet, digital projectors or interactive flat panels, lecture capture systems, and tools for live polls or quizzes. In addition, universities increasingly employ data analytics on student performance (learning analytics) to inform teaching interventions, and they explore virtual reality (VR) and augmented reality (AR) for immersive learning in fields like medicine, engineering, and archaeology.

Despite this progress, the current state of EdTech in higher education also presents a complex picture of disparities and challenges. On one hand, digital technology has dramatically expanded access to knowledge: students can tap into vast open educational resources, digital libraries, and lecture recordings from anywhere at any time. Universities have leveraged technology to reach learners far beyond their campuses, fulfilling a broader social mission of disseminating knowledge (Keefe & Copeland, 2011; Krause & Coates, 2008). On the other hand, a significant digital divide persists. Wealthier institutions and countries have raced ahead with cutting-edge educational technologies, while resource-constrained universities in developing regions struggle with outdated infrastructure and limited connectivity. Socio-economic barriers, such as, lack of broadband internet, shortage of devices, and inadequate technical support, mean that in some parts of the world, students and faculty cannot fully participate in online learning, exacerbating inequalities in educational access.

For example, during the COVID-19 pandemic's shift to online teaching (discussed in Section 5), at least half a billion students globally, roughly 31% of all learners, were effectively left out of the transition due to connectivity or technology deficits. Even within advanced economies, underprivileged or rural student populations often face challenges in engaging with e-learning. Furthermore, there are concerns that much of the online content and digital pedagogy reflects a narrow band of dominant cultures and languages (Alioon & Delialioğlu, 2017; Abdelwahab et al., 2022; Abu-Al-Aish & Love, 2013; Appleton et al., 2008). Nearly 90% of the content in major higher education OER repositories originates from North America and Europe, and roughly 92% of content in the global OER Commons library is in English. This imbalance means that many learners in the Global South or non-English-speaking contexts may find fewer high-quality digital materials tailored to their local culture or language, potentially limiting the global inclusivity of digital education.

The current state of educational technology in higher education is one of dynamic expansion and transformation. Universities worldwide are actively leveraging technologies to innovate teaching models and broaden their reach, evidenced by the pervasive use of LMS platforms and the enrollment of hundreds of millions in online courses. Educational technology has undeniably "sparked a revolution in higher education", altering traditional teaching models and providing greater flexibility and accessibility for learners and instructors alike. Yet this revolution comes with caveats: it poses new regulatory and ethical questions for institutions, requires substantial investment and faculty training to implement effectively, and risks reinforcing global inequities if the benefits of EdTech remain unevenly distributed (Al-Sakkaf et al., 2019; Anthonysamy et al., 2020; Alateyah et al., 2013; Adiguzel et al., 2023). The subsequent sections of this review dives deeper into the competencies needed to navigate this digital landscape, the integration of emerging technologies like AI, the pedagogical frameworks guiding effective use of tech, and the lessons learned from recent disruptive events, all of which shape how higher education can maximize the potential of technology while mitigating its challenges.

2. Digital and Information Literacy as Foundational Competencies

The widespread infusion of technology into higher education has made digital literacy and information literacy indispensable foundational competencies for both students and educators. In a knowledge society defined by ubiquitous digital information, these literacies form the bedrock upon which effective use of educational technology rests. They enable individuals to not only operate technological tools, but to critically engage with information and media in the digital realm, a prerequisite for meaningful learning, research, and participation in academia today.

Digital Literacy in Digital Age

Digital literacy is a broad construct that extends far beyond basic computer skills. It encompasses the ability to confidently and critically use digital technologies to find, evaluate, create, and communicate information (Abdool et al., 2017; Andrew et al., 2015; Aavakare & Nikou, 2020; Ala-Mutka, 2011). The American Library Association's Digital Literacy Task Force defines digital literacy as "the ability to use information and communication technologies to find, evaluate, create, and communicate information", requiring both cognitive and technical skills. In practice, a digitally literate individual can navigate the online environment with purpose and discernment, searching databases effectively, using productivity software or discipline-specific applications, managing digital identities, and collaborating via digital platforms.

Crucially, digital literacy also implies an understanding of digital ethics and safety, such as protecting one's privacy and security online and respecting intellectual property rights. As higher education increasingly relies on digital content delivery and online collaboration, students must develop these competencies to succeed academically and professionally (Ajzen, 1985; Alrasheedi et al., 2015; Ali & Gupta, 2019). For instance, a modern university student may need to conduct literature reviews using online journals, utilize advanced software for data analysis, engage in virtual teamwork, and present findings through multimedia, all tasks demanding a high level of digital proficiency. University instructors, too, require digital literacy to integrate technology into their teaching effectively, whether it be using a learning management system, creating an online quiz, or analyzing learning analytics dashboards.

Importantly, digital literacy is not a static skill set but a continuum of skills that evolves with technology. New media and tools continually emerge (from wikis and webinars in earlier years to today's collaborative coding platforms and AI-driven tools), so digital literacy entails an ethos of *lifelong learning* and adaptability. Educators have recognized that fostering digital literacy is critical for empowering students as self-directed learners and informed citizens. Studies indicate that strong digital literacy skills correlate with improved academic performance and better preparedness for the modern workforce (Van Laar et al., 2017; Van Oostveen & Desjardins, 2013; Van Rooij et al., 2017; Venkatesh et al., 2003).

One literature review found that educational outcomes and employability prospects improve when students are taught to skillfully leverage digital resources and platforms. Consequently, universities around the world have begun integrating digital literacy training into curricula - through firstyear seminars on academic digital skills, library workshops, or embedding digital tasks across courses. Some institutions adopt comprehensive frameworks (like the European Commission's DigCompEdu or Jisc's digital capabilities model) to ensure students and staff develop proficiencies ranging from basic ICT operations to content creation, communication, and critical problem-solving in digital contexts. As Mokhtari emphasizes, digital literacy goes "beyond computer proficiency and comprises a range of skills essential for effective teaching and learning", contributing not only to academic success but also to lifelong learning and future employment competitiveness. In essence, digital literacy in higher education empowers individuals to harness the educational technologies at their disposal, maximizing opportunities for learning while navigating challenges like information overload, cyber threats, and rapidly changing toolsets.

Information Literacy in Higher Education

Parallel to digital literacy is the equally crucial competency of information literacy, which has long been championed in academia (particularly by librarians and educators) as fundamental to scholarly inquiry and critical thinking. Information literacy is classically defined as the ability to recognize when information is needed and to locate, evaluate, and effectively use the needed information (Venkatesh et al., 2012; von Loh & Henkel, 2014; Vural, 2013; Vygotsky, 1978). This definition, articulated by the American Library Association's Presidential Committee on Information Literacy in 1989, remains highly pertinent in the digital era. If digital literacy is about fluently operating in a digital world, information literacy is about judiciously making sense of the world's knowledge much of which is now accessible through digital means. In higher education, information literacy underpins students' ability to conduct research, assess sources, and build knowledge independently. A student with strong information literacy skills can frame research questions, efficiently search academic databases and the web, distinguish between scholarly sources and unsubstantiated opinions, analyze and synthesize evidence, and cite sources properly.

The digital revolution has amplified the importance of information literacy multifold. The Internet and academic eresources have vastly expanded the quantity of information available to students, but quantity does not equate to quality or relevance. Without information literacy, students may be overwhelmed by this "tidal wave" of information and fail to select appropriate, credible sources (Wanner & Palmer, 2015; Warschauer, 2004; Webb et al., 2017; Wekullo, 2019). In the context of higher education, information literacy now includes competencies like discerning reliable websites, understanding search engine algorithms and biases, using advanced search techniques, and evaluating the credibility of online content (such as identifying peer-reviewed articles versus predatory journals, or spotting fake news). University libraries have responded by evolving their instructional

approaches: many offer dedicated information literacy modules, online tutorials, and course-integrated instruction to ensure students can navigate digital libraries and open web information critically. The *Framework for Information Literacy for Higher Education* (adopted by the Association of College & Research Libraries in 2016) exemplifies a modern approach, focusing on core concepts such as "Authority is Constructed and Contextual" and "Research as Inquiry" to instill deeper understanding of how information is produced and valued. These efforts acknowledge that information literacy is not merely a mechanical skill but a mindset of inquiry and skepticism that is essential for academic rigor.

Digital literacy and information literacy often intersect and reinforce each other. Indeed, some educators consider information literacy to be a subset of digital literacy (or vice versa) since effective use of information in the digital age requires technical savvy, and conversely, true digital fluency requires critical evaluation of content. In practical terms, a student searching for sources for an assignment must use digital tools (search engines, databases) proficiently (digital literacy) while also judging the relevance and credibility of the sources found (information literacy) (Wimpenny & Savin-Baden, 2013; Winstone et al., 2017; Yildiz Durak, 2023; Yüzbaşioğlu, 2021). Both competencies are foundational for autonomous, self-directed learning, a hallmark goal of higher education. An information-literate and digitally literate graduate is one who has "learned how to learn" and can continue acquiring and applying knowledge throughout life. Recognizing this, accreditation bodies and policy frameworks worldwide emphasize these literacies as key learning outcomes. For example, UNESCO's framework on Media and Information Literacy (MIL) integrates digital and information literacy components as critical for all learners in the 21st century, advocating that universities produce graduates who can critically consume information and responsibly produce content in digital spaces.

In summary, as higher education becomes ever more entwined with technology and vast information networks, digital literacy and information literacy serve as essential enablers of academic success and scholarly integrity. They provide students and faculty with the competency "toolkits" needed to effectively harness educational technology, whether it be engaging with an online course, conducting literature research, utilizing an academic social network, or using AI tools (as discussed in the next section) responsibly. The global push to improve these literacies is a recognition that without a baseline of digital and information fluency, the promise of educational technology could be undermined by shallow engagement, misinformation, and inequity. Conversely, with strong foundational literacies, learners and educators are empowered to critically embrace technology as a means to enrich teaching, learning, and the creation of new knowledge.

3. Generative AI in Higher Education

One of the most disruptive developments in educational technology in recent times is the advent of generative artificial intelligence (GenAI) tools, epitomized by large language model chatbots such as OpenAI's ChatGPT. Launched in

late 2022, ChatGPT and similar AI systems can produce remarkably human-like text in response to prompts, solve problems, generate code, and engage in dialogue on a wide range of topics. The arrival of these powerful AI tools has sent shockwaves through higher education, prompting both excitement about new opportunities for teaching and learning, and deep concern about academic integrity and the very nature of student work. This section examines how generative AI is being integrated into higher education and its multifaceted impact on pedagogy, assessment, and the student experience.

Implications for Pedagogy and Instruction

Generative AI holds significant potential to augment pedagogy by serving as a versatile tool for both instructors and students. Educators have begun exploring ChatGPT and similar models as teaching assistants, for example, to generate examples, explanations, or practice questions on the fly during class, or to provide students with instant answers to frequently asked questions outside of class time. In fields such as computer science and writing, instructors report using AI to demonstrate problem-solving processes or to generate multiple drafts of text that students can then critique, thereby turning the AI into a pedagogical object. AI-driven tutoring systems are also emerging, wherein a chatbot can adaptively respond to a student's queries and provide hints or resources, functioning as an on-demand personal tutor (Záhorec et al., 2019; Zepke, 2014; Zepke, 2018; Zepke & Leach, 2010).

Early classroom experiments suggest that AI chatbots can enhance human-computer interaction in learning by giving students a non-judgmental interlocutor to test their understanding or brainstorm ideas. Instructors, for their part, are finding AI useful for tasks like rapidly creating lesson plans, examples, or quiz questions, thus freeing time to focus on higher-order teaching tasks. Research support is another noted benefit: ChatGPT can summarize literature or suggest references (albeit with caution needed regarding accuracy), helping faculty and graduate students in the initial stages of research and writing (Zhang & Aasheim, 2011; Zheng et al., 2018). The transformative architecture of ChatGPT, with its ability to generate coherent, contextually relevant responses, introduces a new kind of interactivity in the classroom, potentially fostering more dynamic discussions and inquirybased learning. For instance, a professor might prompt the AI to take a stance on a debate topic and have students refute or analyze the AI's argument, thereby sharpening their critical thinking.

However, the integration of GenAI into pedagogy is not without pitfalls. A foremost concern is that over-reliance on AI-generated content could diminish students' development of fundamental skills. If students lean on ChatGPT to compose essays, solve math problems, or translate languages, they may bypass the deep learning that comes from doing these tasks manually. Educators worry about a scenario where students become passive consumers of AI outputs rather than active producers of knowledge (Atlas, 2023; Bartolomé et al., 2018; Atmacasoy & Aksu, 2018; Bailey et al., 2021). This has sparked calls for a re-emphasis on teaching "AI literacy",

ensuring students understand how AI works, its limitations (such as tendencies to produce plausible-sounding but incorrect or biased answers), and how to use it ethically and effectively as a tool rather than a crutch. Some institutions have started incorporating AI literacy modules so that students and faculty can critically evaluate AI outputs and incorporate them appropriately.

Faculty are also adapting their pedagogy by designing learning activities that complement AI capabilities rather than compete with them. For example, assignments might shift towards more creative, applied, or higher-order tasks that AI cannot easily handle, such as personal reflections, hands-on projects, or oral exams, thereby ensuring that human insight and effort remain central (Arnold & Paulus, 2010; Bayrakdaroğlu & Bayrakdaroğlu, 2017; Avcı & Ergün, 2019; Astin, 1984). Generative AI presents a double-edged sword for pedagogy: it offers innovative avenues for engagement and support, but demands thoughtful integration to avoid undermining the cultivation of students' own cognitive and creative abilities. The consensus emerging in scholarly discussions is for a balanced approach where educators proactively and ethically incorporate AI tools to enhance learning, while transparently addressing their limitations and modeling responsible use.

Challenges for Assessment and Academic Integrity

Perhaps the most immediate and widely discussed impact of generative AI in higher education has been on assessment practices and academic integrity. ChatGPT's ability to produce fluent essays, solve complex problem sets, or even generate code has effectively introduced a new form of potential academic misconduct: students may use AI to complete assignments or exam questions that are meant to demonstrate their own learning (Bedenlier et al., 2020b; Bandura, 1971; Bailey et al., 2020; Azevedo, 2015). Traditional plagiarism detection tools are ill-suited to catching AI-generated text, especially as it is often original content (not directly copied from elsewhere) but not original in authorship. Early studies and anecdotes revealed that ChatGPT could pass certain professional exams and MBA assignments, raising alarms among faculty. The ease with which a student can prompt an AI to "write a 1000-word essay on Shakespeare's imagery" and receive a coherent output within seconds forces educators to rethink what knowledge or skills their assessments are truly measuring. In response, universities worldwide have scrambled to update their academic integrity policies. Some initially reacted with outright bans on AI usage in coursework, equating it to unauthorized assistance akin to having someone else do your work (Astin, 1999; Baron & Corbin, 2012; Barak, 2018; Ben-Eliyahu et al., 2018). However, enforcing such bans is difficult, and a growing perspective is that banning AI is neither feasible nor educationally sound in the long run, given that AI tools will likely be part of students' future professional lives.

The presence of AI in assessment has thus become a catalyst for assessment reform in higher education. Educators are exploring new forms of assessment less susceptible to unapproved AI assistance. These include a greater emphasis on

in-person assessments (like proctored exams or oral defenses), group work that requires interactive processes, and scaffolded assignments that require students to show intermediate steps or reflections (making it harder to simply insert an AI-generated answer) (Barak & Levenberg, 2016; Baydas et al., 2015; Bedenlier et al., 2020a). Additionally, there's a trend toward designing questions that are "AI-resilient," for example, by asking students to draw on personal experiences, recent class discussions, or unique datasets that a general AI model would not have access to or cannot easily mimic. In some cases, instructors have flipped the script by explicitly allowing or even encouraging AI use, but then requiring students to critique or improve upon the AI's output, thus turning the assessment into an exercise in AI evaluation and critical thinking. This approach not only addresses integrity concerns by acknowledging AI usage, but also integrates skillbuilding in working with AI.

Still, substantial challenges remain. Online testing security has become a prominent issue: if exams are administered remotely, students could surreptitiously consult AI tools unless strict proctoring or lockdown browsers are in place (which themselves raise privacy and stress concerns). The specter of contract cheating also looms larger, it's not just AI, but human-assisted cheating facilitated by technology (e.g., paying someone met through the internet to do an assignment) that complicates the integrity landscape (Biswas, 2023; Boekaerts, 2016; Bouta et al., 2012; Bishop et al., 2020). Generative AI thus adds to a broader need for robust academic honesty cultures and honor codes in institutions, emphasizing trust and ethical development. On the upside, AI is also being harnessed to improve assessment in legitimate ways: for instance, some faculty use AI to rapidly grade routine answers or provide formative feedback. Early implementations of AIdriven grading show promise in reducing instructor workload for large classes, though concerns about fairness and transparency persist if AI makes evaluative judgments. In research contexts, plagiarism detection software is being augmented with AI to catch potentially AI-written text or to verify the originality of scientific writing.

University policy-makers have begun to formulate guidelines that articulate what constitutes acceptable versus unacceptable use of AI in coursework, often requiring disclosure if AI was used, and differentiating between using AI for preliminary research or editing (which might be allowed) versus using it to generate substantive content of an assignment (typically disallowed). A recent examination of leading universities' policies in the United States and UK revealed diverse approaches, but a converging recognition that students must be made aware of the ethical implications of GenAI and that assessments must evolve to uphold standards in this new era (Lai & Bower, 2019; Landauer, 2003; Laurillard, 2009; Lawson & Lawson, 2013). Generative AI has triggered a critical re-examination of assessment design and academic integrity measures in higher education, acting as a stress test for the robustness of traditional evaluation methods. The collective response, balancing stricter integrity safeguards with innovative assessment redesign, will significantly shape teaching practices and student evaluation in the years to come.

Student Engagement and Learning Experience

The student experience is at the heart of the discussion on AI in higher education, as GenAI can profoundly influence how students learn, practice, and interact with course material. On one level, tools like ChatGPT can enhance student engagement by providing immediate, personalized assistance. Students studying independently can ask the AI to clarify a difficult concept, get examples, or receive feedback on their writing drafts at any hour, functioning as a kind of "always-on" tutor or writing coach. This can be particularly beneficial for students who might be reluctant to ask questions in class or those who lack other support; the AI's non-judgmental nature might encourage more exploratory questioning (Lazar et al., 2020; Lea & Jones, 2011; Leach & Zepke, 2011; Leahy & Dolan, 2010).

Additionally, generative AI can help students iterate on their work more efficiently. For example, a student can generate multiple thesis statement options with the help of AI and then choose the best one to develop further, or use AI to debug a piece of code they are writing. In these ways, when used judiciously, AI can act as a force multiplier for learning, helping students achieve a deeper understanding through guided practice and reducing routine frustrations. Some early research even explores AI-driven adaptive learning, where an AI chatbot adjusts the difficulty of questions based on the student's performance, aiming to keep the student in an optimal learning zone - a form of personalized learning experience that could improve mastery and retention.

On another level, however, there are valid concerns about how AI might negatively affect student engagement and learning behaviors. There is the risk of students developing a dependency on AI for answers, short-circuiting the productive struggle that is often necessary for learning (Leask, 2013; Lee et al., 2022; Lewin & McNicol, 2015; Li et al., 2017). If a student bypasses critical thinking by getting an AI to solve problems, they may gain correct answers without acquiring the underlying knowledge or skills. This ties back to the earlier point about potentially hollowing out learning if AI is misused. Moreover, the quality of AI-provided explanations or information can be uneven, while often impressive, models like ChatGPT do sometimes produce incorrect or misleading answers (the phenomenon of AI "hallucinations"). Students need fairly sophisticated judgment to detect such errors, and without that, they might confidently learn incorrect information. This makes information literacy (evaluating AI output) more crucial than ever, as discussed in Section 2.

There is also an emotional and psychological dimension: some educators have noted instances of "AI anxiety" among students - a fear that they are somehow falling behind an all-knowing AI or that their skills are becoming obsolete. Students might feel uneasy about the value of their own writing or coding when an AI can produce something similar in seconds. Managing such anxieties is becoming part of the educator's role, reassuring students of the enduring importance of human creativity, critical thinking, and domain expertise. From an engagement perspective, human interaction remains key. Overuse of AI might reduce students' direct interactions

with peers and instructors. For example, if students get answers from a chatbot rather than discussing with classmates or attending office hours, opportunities for collaborative learning and mentorship could diminish. This potential "decrease in human interaction" is cited as a risk of indiscriminate AI adoption (Lim, 2004; Lindberg & Olofsson, 2012; Liu et al., 2020; Lloyd, 2006). Universities are therefore challenged to integrate AI in ways that augment rather than replace meaningful human engagement. One positive strategy is to use AI collaboratively - for instance, having students work in groups to assess or improve AI-generated content can actually spark rich discussions and collective problem-solving. In such cases, the AI acts as a catalyst for engagement rather than a replacement for it.

Institutional surveys suggest that students' attitudes towards using AI in their studies are mixed but trending towards pragmatic acceptance. Many students recognize the utility of tools like ChatGPT for brainstorming, editing, or checking their understanding, and they appreciate having another resource in their learning toolkit. At the same time, conscientious students worry about the ethical line, they seek guidance on how to use AI appropriately without crossing into cheating (Lodge et al., 2019; Lowenthal, 2010; Lu et al., 2021; Lubowitz, 2023). Clear communication from instructors about permitted AI use is thus important to ensure students do not inadvertently violate rules or disadvantage themselves by refraining from helpful aids that peers might be using. In response, some universities have provided guidelines encouraging transparency (e.g., ask students to indicate if and how they used AI in an assignment) and emphasizing that the student is ultimately responsible for the quality and correctness of their work, even if AI tools were utilized.

Generative AI's integration into higher education is a story of both opportunity and upheaval. Pedagogically, it invites innovation in teaching methods and offers powerful support tools, yet it also necessitates new teaching emphases on AI literacy and critical thinking. In terms of assessment and integrity, it compels a reevaluation of how we measure learning and maintain trust in credentials. For students, AI can be an empowering study aid but also a temptation that could undermine genuine learning if misused (Lundin et al., 2018; Bond et al., 2018; Biggs, 2011; Betihavas et al., 2016; Bozkurt & Sharma, 2020). The consensus in academic discourse is that AI is here to stay in higher education, and the task now is to develop "thoughtful and responsible integration" strategies. Institutions are beginning to craft policies and invest in training so that faculty and students alike can navigate this new landscape ethically. In many ways, generative AI has prompted higher education to refocus on its core values critical inquiry, integrity, creativity, and lifelong learning - and to ensure these are not lost amid the allure of convenience and automation.

As we look ahead, generative AI will undoubtedly be a significant part of the future higher education ecosystem, a theme that will reappear in Section 6's discussion of future trajectories.

4. Instructional Design, Learning Management Systems and Active Learning

The term digital pedagogy refers to the application of pedagogical principles and instructional design strategies to teaching with digital technologies. It encompasses how educators design learning experiences, utilize platforms like learning management systems, incorporate interactive tools, and implement active learning strategies in technology-enhanced environments. Effective digital pedagogy requires more than simply using tech tools, it demands an alignment of technology with didactic objectives and sound learning theories (Bhattacharya et al., 2023; Bolden & Nahachewsky, 2015; Biggs, 1999; Boyle et al., 2016). In this section, we explore key components of digital pedagogy in higher education: the role of instructional design, the centrality of learning management systems, the use of interactive tools to engage students, and the integration of active learning frameworks in digital contexts.

Instructional Design for Digital Learning

Instructional design is the deliberate planning of course structure, content sequencing, and learning activities to achieve desired learning outcomes. In the digital realm, instructional design becomes even more critical as instructors must compensate for the reduced structure of time and place found in face-to-face settings by creating a clear and engaging learning path online. Popular design models like ADDIE (Analyze, Design, Develop, Implement, Evaluate) or the Backward Design approach guide educators to first identify learning goals, then determine acceptable evidence of learning, and finally plan learning experiences, integrating technology in a purposeful way at each step (Bond et al., 2019b; Blau & Shamir-Inbal, 2017; Broadbent & Poon, 2015; Bond, 2018). A core idea in digital course design is that technology should serve pedagogy, not the other way around. The Technological Pedagogical Content Knowledge (TPACK) framework offers a useful lens here: it posits that effective technology integration arises when an instructor's knowledge of technology, pedagogy, and content intersect. In other words, a teacher needs to understand not just their subject and how to teach it, but also which technological tools or resources best convey specific content or foster particular skills. TPACK-informed design prevents technology from being an afterthought or a gimmick; instead, tech is woven inextricably through the learning design to enhance and support the whole educational experience.

In practice, instructional design for digital learning might involve breaking content into manageable learning modules with a logical flow, employing multimedia (video lectures, infographics, podcasts) to cater to different learning preferences, and ensuring accessibility (through captions, transcripts, and universal design principles). It also involves planning for student interaction and feedback in an online medium: crafting discussion prompts for forums, designing collaborative assignments via cloud tools, or scheduling synchronous webinars for Q&A and class discussion (Bond & Bedenlier, 2019a; Boyle et al., 2012; Bodily et al., 2019; Bigatel & Williams, 2015). The Community of Inquiry (CoI)

framework often guides online course design by emphasizing social presence, cognitive presence, and teaching presence to create a rich educational experience. An instructor practicing good digital pedagogy will actively establish teaching presence (e.g., through a welcoming video, regular announcements, prompt feedback) to guide students, foster social presence by encouraging introductions and group activities to create a learning community, and stimulate cognitive presence by posing challenging questions and problems that students grapple with, perhaps collaboratively, using digital tools.

Crucially, digital instructional design leverages the analytics and data generated in online environments to refine pedagogy. Many platforms provide data on student engagement (clicks, video watch durations, forum posts) and performance on quizzes or assignments. Instructors and instructional designers can use this data formatively, identifying content that many students struggle with and providing just-in-time clarifications or redesigning that module in the next iteration (Chen, Jensen, Albert, Gupta, & Lee, 2023; Creswell & Plano Clark, 2017; Castañeda & Selwyn, 2018; Davis, 1989). Some universities have learning design teams or centers for teaching excellence that assist faculty in applying these principles, reflecting the recognition that designing high-quality digital learning experiences is both an art and a science. Done well, digital instructional design can create courses that are not only equivalent in rigor to face-to-face offerings but that also exploit unique advantages of the digital medium, such as selfpaced exploration, immediate feedback through automated quizzes, and the ability to incorporate real-world, up-to-date online resources into the curriculum.

Learning Management Systems and Platforms

If instructional design provides the blueprint for learning, the Learning Management System (LMS) is the foundational platform that brings that blueprint to life in the digital space. LMSs are comprehensive digital platforms that enable educational institutions to manage, deliver, and track course content and learning activities (Crompton & Burke, 2023; Brunton, Stansfield, & Thomas, 2012; Crompton, Burke, Gregory, & Gräbe, 2016; Bryman, 2007). Over the past two decades, LMSs have become virtually indispensable in higher education. They serve as the virtual classroom, providing a single point of access for students to retrieve lecture materials, submit assignments, participate in discussions, take quizzes, and monitor their progress. The ubiquity of LMS adoption was dramatically highlighted during the COVID-19 pandemic when institutions worldwide relied on these systems to maintain instructional continuity amidst campus closures. Even in a post-pandemic context, LMSs remain central as hybrid and online models persist.

Modern LMS platforms (such as Canvas, Blackboard, Moodle, Sakai, and others) have evolved far beyond being static content repositories. They now offer a suite of interactive and administrative features: integrated video conferencing for live classes, plagiarism detection plugins, peer assessment modules, analytics dashboards for instructors, and mobile apps for learning on the go. A well-utilized LMS can

facilitate dynamic and collaborative teaching approaches, for example by hosting student blogs, wikis for group projects, or discussion boards that extend class conversations throughout the week (Davies, 2014; Choi, Glassman, & Cristol, 2017; Colwell, Hunt-Barron, & Reinking, 2013; Davis, 1989). They often allow the embedding of third-party learning tools via standards like LTI (Learning Tools Interoperability), meaning an instructor can plug in external applications, from simulation tools to coding sandboxes to publisher e-textbooks into the LMS environment, creating a seamless experience for students. The LMS also streamlines administrative tasks: tracking grades, recording attendance (in blended contexts), and handling course enrollments and content distribution securely.

The impact of LMSs on pedagogy is significant. By structurally organizing a course's digital footprint, an LMS encourages instructors to articulate the course narrative clearly (with modules, sections, or weeks outlined and associated materials provided). It also encourages consistency and transparency; students can easily see course expectations, due dates, and their own grades in real-time, which can improve self-regulation and reduce confusion. Many LMSs include quiz engines and question banks that allow instructors to implement frequent low-stakes assessments, which educational research has shown to enhance retention through the "testing effect." Automated grading of quizzes with instant feedback is another pedagogical boon, providing students with prompt insights into their understanding (Cheston, Flickinger, & Chisolm, 2013; Chen, Lambert, & Guidry, 2010; Chávez Herting, Cladellas Pros, & Castelló Tarrida, 2020; Castañeda & Selwyn, 2018). Some LMS features promote reflection and metacognition, for instance, adaptive release conditions can require students to complete a reflective survey before proceeding to the next unit, or a choice activity might let students take different learning pathways.

However, it's worth noting that simply having an LMS doesn't guarantee effective learning; it must be used thoughtfully. There are cases where LMS environments become dumping grounds for PDFs and slide decks, reproducing a passive one-way knowledge transfer model. The real power of an LMS is realized when instructors use it to create an active learning ecosystem, taking advantage of interactive functionalities and student-centered design. Moreover, usability and support are crucial: both faculty and students need training to exploit advanced LMS features (beyond just uploading files or writing on forums). The issue of technical support and training emerges in research as a key factor influencing LMS adoption and satisfaction (Broadbent, Panadero, Lodge, & de Barba, 2020; Chen, Wang, Kirschner, & Tsai, 2018; Chan, 2023b; Cronin, 2017). Instructors who lack confidence or training in the LMS's capabilities may not fully integrate it into pedagogy, and students encountering poorly designed LMS courses may disengage. Thus, institutions often invest in professional development to raise the collective capacity to use LMS tools effectively. When embraced and leveraged fully, the LMS is a cornerstone of digital pedagogy, enabling the implementation of varied instructional strategies and serving as a hub that connects all digital aspects of a course.

Interactive Tools and Engagement Strategies

One of the promises of educational technology is to transform passive learning into active, engaging learning. A wide array of interactive tools has been developed and adopted in higher education to facilitate this transformation. These include audience response systems (like clickers or polling apps), online discussion forums, collaborative editing tools, educational games and simulations, virtual laboratories, and more recently, AR/VR experiences (Coates, 2007; Connolly, Boyle, MacArthur, Hainey, & Boyle, 2012; Chen, 2011; Dahmash, Alabdulkareem, Alfutais, Kamel, Alkholaiwi, Alshehri, Zahrani, & Almoaiqel, 2020). The unifying theme is that these tools require students to do something, be it answering a question, solving a problem, contributing to a collective artifact, or making decisions in a simulated scenario rather than passively consuming information. Interactive digital tools, when aligned with good pedagogical design, have been shown to improve student motivation, critical thinking, and even learning outcomes.

For example, consider a large lecture class where traditionally a professor might talk for 60 minutes and only a few students ask questions at the end. With an interactive polling tool (like PollEverywhere or Kahoot) integrated into the lecture, the instructor can pose questions periodically; every student responds via their device, and the aggregated results appear in real time (Crook, 2019; Carvalho, Areal, & Silva, 2011; Cook & Bissonnette, 2016; Bulu & Yildirim, 2008). This not only breaks the monotony and refocuses attention, but provides instant feedback to both the students and instructor about understanding. Such audience response systems are a staple of technology-enhanced active learning, and studies have found they can significantly increase participation and attentiveness, especially in large classes. In online courses, where physical hand-raising isn't possible, similar engagement can be achieved via Zoom polls or quiz activities embedded in video lectures.

Collaborative tools also play a key role. Google Docs or wiki platforms, for instance, allow students to co-create content asynchronously. An instructor might assign groups of students to collectively draft a study guide in a shared online document or to collaborate on a research proposal (Caniglia, John, Bellina, Lang, Wiek, Cohmer, & Laubichler, 2018; Bundick, Quaglia, Corso, & Haywood, 2014; Bruhn, 2016). The technology tracks contributions and allows simultaneous editing, thereby facilitating teamwork even among students who never meet in person. This fosters a sense of community and peer learning, students often report that explaining concepts to peers or seeing others' perspectives in a collaborative space deepens their own understanding. There are also disciplinespecific interactive tools, such as virtual lab environments where STEM students can simulate experiments (e.g., dissecting a virtual organism or mixing virtual chemicals) and visualization tools that let learners manipulate models (like rotating a 3D molecule or exploring a historical map through time). These tools bring abstract concepts to life and can provide experiential learning opportunities that would be difficult, unsafe, or expensive to arrange physically.

Gamification and educational games form another category of interactive engagement. By incorporating game-like elements - points, badges, challenges, or storytelling, instructors aim to increase student engagement and persistence (Eggmann, Weiger, Zitzmann, & Blatz, 2023; Eisenberg, 2008; Doherty & Doherty, 2018; Englund, Olofsson, & Price, 2017). Platforms for gamified quizzes (like Quizizz or Duolingo's approach to language learning) leverage competition and reward mechanisms to make practice feel more like play. Research into gamification in higher education has shown mixed but generally positive effects on engagement and sometimes on achievement, particularly when the gamified tasks align closely with learning objectives rather than being superfluous.

From a pedagogical standpoint, these interactive tools are most effective when grounded in active learning frameworks. For instance, flipped classroom models often use technology to free up class time for active learning: students first encounter new material via online videos or readings, possibly with embedded quizzes to ensure accountability, and then class time (in person or synchronous online) is devoted to interactive application exercises, problem-solving, or discussions (Dede, 2010; Delialioglu, 2012; Desjardins, 2001; Dron & Anderson, 2014). The interactive elements here (video quizzes, online forums for pre-class questions, etc.) ensure students come prepared and allow instructors to gauge understanding beforehand. Another framework, problem-based learning (PBL), can be enriched with digital tools by giving student groups an online space to research and compile their solutions, or by providing rich media case studies via an LMS. Peer instruction, pioneered by Eric Mazur for physics education, uses a cycle of individual thinking, peer discussion, and re-polling (often facilitated by clickers or polling apps) to improve conceptual understanding in large classes, a technique now widely applied in various fields with technological sup-

Crucially, empirical evidence strongly supports the shift toward active and interactive learning. A meta-analysis of over 200 studies in STEM courses found that students in traditional lecture settings were 1.5 times more likely to fail than those in classes with active learning, and that active learning increased exam performance significantly. Technology serves as an amplifier for active learning: it can lower barriers to participation (every student can have a voice in an online forum, not just the outspoken ones in a classroom), provide immediate feedback loops, and create authentic learning experiences (like simulating real-world scenarios or enabling connections with external communities via social media or video conferencing). Digital pedagogy thus leverages interactive tools as means to implement well-established active learning principles at scale and across different learning modalities (DePaolo & Wilkinson, 2014; Eccles & Wang, 2012; Essel, Vlachopoulos, Tachie-Menson, Johnson, & Baah, 2022; Finn, 2006).

That said, the integration of multiple tools requires coordination and can lead to *platform fatigue* if overdone. The best practice is often to choose a few versatile tools and use them consistently so students are not overwhelmed by technology

itself. It's also vital to ensure accessibility of these tools for all students, including those with disabilities, by enabling captions, using screen-reader-compatible platforms, and offering alternative modes of participation when needed.

Active Learning Frameworks in Technology-Enhanced Education

Active learning, where students engage in activities like discussing, debating, applying, or teaching content, is greatly facilitated by the digital strategies discussed, but it's worth highlighting how specific active learning frameworks have been adapted and amplified by technology in higher education. The flipped classroom approach has already been mentioned; it relies on technology (for content delivery outside class and sometimes for assessment of understanding) to repurpose class time for higher-order engagement (Fabian, Topping, & Barron, 2016; Dohn, Markauskaite, & Hachmann, 2020; Filsecker & Kerres, 2014; Dunn, 2002). Similarly, blended learning models combine in-person instruction with substantial online components. These models, such as the Rotation model (where students alternate between online and face-to-face stations) or the HyFlex model (which offers parallel in-person and online participation options), require careful digital pedagogy planning to ensure that the online and offline parts are integrated and complementary. For example, in a blended course a student might watch an interactive lecture video on the LMS, take a quick online quiz for self-assessment, engage in an online discussion, and then in the in-person session perform a hands-on experiment or group project that builds on that online preparatory work. The LMS in this case orchestrates the flow and keeps the continuity between modes.

Another framework, Team-Based Learning (TBL), traditionally involves in-class team activities and readiness assurance tests. In an online or hybrid environment, digital tools can deliver the individual readiness test via the LMS, then immediately form students into breakout groups in a video-conference or have them collaborate in a group quiz in the LMS, thus executing TBL virtually (Desjardins & Van Oostveen, 2015; Eccles, 2016; Eshet-Alkalai, 2004; Diep, Cocquyt, Zhu, & Vanwing, 2016). The active learning outcomes, peer teaching, immediate feedback, application of concepts, can be preserved with adept use of technology. Project-based learning (PjBL) and inquiry-based learning also benefit from digital enhancements. Students can use project management tools (like Trello or Slack) to coordinate their teamwork, online research repositories and data sets to inform their projects, and digital creation tools (from video editors to programming environments) to produce their outputs. The role of the instructor shifts to a facilitator or coach, often mediated through technology as well, for instance, through regular progress check-ins on a discussion board or feedback provided on drafts uploaded to the LMS.

An important aspect of digital pedagogy in active learning is the development of metacognitive activities. Digital portfolios, for instance, allow students to collect evidence of their learning over time and reflect on it, often publicly or within the class (Fredricks, Wang, Schall Linn, Hofkens, Sung, Parr,

& Allerton, 2016; Garcia & Lee, 2020; Fukuzawa & Boyd, 2016; Foo, Majid, Mokhtar, Zhang, Chang, Luyt, & Theng, 2014). Blogs or reflective journals hosted on an LMS or external platform give students space to articulate their learning process, which research shows can solidify knowledge and promote deeper learning. These practices existed pre-digitally, but technology makes them easier to implement, share, and even assess (peers and instructors can comment, providing an additional layer of interaction).

Digital pedagogy in higher education marries robust instructional design with powerful platforms and tools to enact active, student-centered learning. Technologies such as LMSs, when used to their full potential, provide the scaffolding for content and interaction, while interactive tools inject vibrancy and participation into the learning process (Fredricks, Blumenfeld, & Paris, 2004; Georgina & Hosford, 2009; Gillissen, Kochanek, Zupanic, & Ehlers, 2022; Ghalandari, 2012). Active learning frameworks, proven to enhance learning outcomes, are scalable and adaptable through thoughtful use of these digital means. The overarching theme is intentionality: successful digital pedagogy is not about using technology for its own sake, but about selecting and integrating technologies in alignment with pedagogical goals and learning principles. When this alignment is achieved, the result is a more engaging, efficient, and effective higher education experience that prepares students not only to recall information but to apply, analyze, create, and continue learning in a digitally infused world.

5. Transformations in Teaching and Learning Post-COVID-19

The COVID-19 pandemic that swept the globe in 2020-2021 was an unprecedented disruptor of higher education, forcing a sudden, wholesale shift to remote learning and catalyzing rapid changes that continue to reverberate in the post-pandemic era. This section discusses how teaching and learning in universities have been transformed since COVID-19, focusing on the rise of hybrid and online modalities, the challenges encountered, and the institutional responses and innovations that emerged as a result.

Emergence of Hybrid and Online Modalities

Prior to 2020, online education was steadily growing but often regarded as a complement or alternative to traditional face-to-face instruction, not its core. The pandemic changed that overnight. Virtually every higher education institution worldwide was compelled to pivot to emergency remote teaching, adopting online platforms to deliver lectures, labs, and exams (Fredricks, Filsecker, & Lawson, 2016; Glaser & Strauss, 1967; Ghotbi, Ho, & Mantello, 2022; Gleason, 2012). This grand forced experiment demonstrated on a massive scale that digital modalities could be implemented across the curriculum, albeit under crisis conditions. In the aftermath, as campuses reopened, a "new normal" has taken shape in which hybrid learning models are far more prevalent and accepted. Hybrid teaching, which blends online and in-person instruction, has emerged as a dominant approach and is

anticipated to persist as a defining trend in future educational reforms globally. Many universities now offer HyFlex courses (where students choose to attend either in person or online, synchronously or asynchronously) or rotate students between classroom and online participation to manage physical distancing when needed (Fischer, Lundin, & Lindberg, 2020; Gayed, Carlon, Oriola, & Cross, 2022; Fornell & Larcker, 1981; Gherhes & Obrad, 2018). Additionally, fully online programs and courses expanded dramatically, with institutions investing in online program development for long-term resilience and market reach.

Surveys suggest that students and faculty have mixed preferences regarding modality, but they broadly appreciate the flexibility afforded by online or hybrid options. Location flexibility, the ability to access recorded lectures at any time, and the convenience of attending class from anywhere are cited advantages that have led many to continue preferring some online learning even when in-person is safe (Finn & Zimmer, 2012; Fishbein & Ajzen, 1975; Gough, Oliver, & Thomas, 2012; Gupta, 2009; Hair, Ringle, & Sarstedt, 2011; Gullikson, 2006). For example, a student might attend a live lecture on campus one day, then join virtually another day due to personal circumstances, without falling behind, a level of flexibility rarely possible pre-pandemic. Likewise, a guest expert might join a class via Zoom from across the world, enriching the curriculum in ways logistically difficult before. Recognizing these advantages, numerous universities have built hybrid classrooms equipped with cameras, microphones, and interactive boards to facilitate simultaneous inperson and remote participation, ensuring that remote students can see, hear, and engage with the classroom and vice

However, the post-COVID equilibrium is still being found. Some courses have reverted fully to in-person, especially those requiring hands-on practice (wet labs, clinical practicums, etc.) where physical presence is irreplaceable (Harrar, 2023; Gong, Nugent, Guest, Parker, Chang, Khosa, & Nicolaou, 2019; Henrie, Halverson, & Graham, 2015; Henderson, Selwyn, & Aston, 2017). Others remain fully online, particularly in graduate or professional programs where students are working and value convenience. A substantial share has settled on blended learning, where certain activities (like lectures or quizzes) are online and others (like discussions or projects) are face-to-face, capitalizing on the strengths of each mode. Importantly, the stigma that online education was inferior has diminished, as virtually all students and faculty have now experienced online learning first-hand; this familiarity is likely to fuel ongoing demand for digital elements in higher education. In sum, the pandemic dramatically accelerated the integration of digital modalities, compressing perhaps a decade of gradual change into a single year (Hair, Hult, Ringle, & Sarstedt, 2017; Heider, 2009; Harden & Gough, 2012; Heflin, Shewmaker, & Nguyen, 2017). Hybrid learning has become "a prevalent approach", not as an emergency measure but as an intentional pedagogical choice, and institutions are adapting their strategies and infrastructure around this new reality.

Challenges in the Post-Pandemic Educational Landscape

Despite the successful emergency pivot and the opportunities opened by hybrid models, the transformations post-COVID have come with significant challenges. One major challenge has been maintaining student engagement and academic performance in online or hybrid environments. Many instructors and studies reported that students' motivation and participation dipped during prolonged periods of remote learning (Granberg, 2010; Greenwood & Kelly, 2019; Harrer, 2023; Gross & Latham, 2012). The absence of the campus social environment, coupled with "Zoom fatigue" from back-to-back online classes, contributed to disengagement for some learners. In hybrid settings, ensuring that remote students are as engaged as those physically present has proven difficult, often remote students become passive observers if the course is not carefully designed for interaction parity. Evidence from some courses showed declines in student performance or satisfaction when shifting to hybrid formats without sufficient pedagogical adjustments. For instance, at one university, the average exam scores in certain subjects were lower in 2022 (amid hybrid teaching) compared to pre-pandemic, and more than half of students expressed a preference for the traditional offline format. This suggests that hybrid teaching, while likely here to stay, needs refinement to fully match the effectiveness of well-tuned in-person courses.

Another set of challenges is technological and infrastructural. The pandemic exposed how uneven access to technology is, even within higher education populations. Students without reliable high-speed internet, a quiet study space, or up-to-date devices were at a clear disadvantage during remote learning. Although many universities loaned laptops or Wi-Fi hotspots, these gaps persist in the post-pandemic period as potential barriers to equitable hybrid learning. Furthermore, the increased reliance on educational technology raised issues of platform reliability and cybersecurity (Gupta, Seetharaman, & Maddulety, 2020; Hair, Risher, Sarstedt, & Ringle, 2019; Hatzipanagos & Code, 2016; Hess & Singer, 1995). Instances of system outages during online exams or the rise of "Zoom-bombing" (unwanted intrusions into video classes) highlighted the need for robust IT infrastructure and better digital security practices. Cyberattacks on university systems, including LMS ransomware incidents, also climbed, underscoring the vulnerability of heavily online operations.

Faculty workload and training comprise another challenge. The pandemic workload for instructors was enormous, learning new tools, redesigning courses for online delivery, and providing additional support to students in distress (Hennessy, Girvan, Mavrikis, Price, & Winters, 2018; Hew & Cheung, 2013; Hew, Huang, Du, & Jia, 2023). Post-pandemic, faculty are expected to be adept in multiple delivery modes and often to run hybrid classes that effectively are two classes in one (serving in-person and remote students). This can be unsustainable without adequate support. In many cases, professors have had to master technical skills and instructional design concepts on the fly; those who entered the profession with traditional training may struggle with this

expanded skill set. While some faculty thrived and innovated, others experienced burnout or frustration, feeling that the technology was an obstacle or that they were not prepared to teach effectively online. Student well-being has also been a concern. The pandemic period saw heightened stress, anxiety, and isolation among students, which in turn affected learning (Ma et al., 2015; Maerten & Soydaner, 2023; Mahatmya et al., 2012; Major et al., 2018). Adapting back to campus life or to hybrid routines is another transition that students have to manage. Universities have been grappling with how to provide adequate academic advising, mental health support, and accommodations in this changed context.

Lastly, academic integrity emerged as a challenge during remote assessment (tying in with the previous section on AI but also more broadly). With students taking exams from home, incidents of cheating rose in some institutions, leading to a boom in online proctoring solutions and alternative assessment formats. The aggressive use of remote proctoring software (which can involve intrusive monitoring of students' cameras, microphones, or even browsing activity) sparked debates about privacy and the psychological toll on students (Mansouri & Piki, 2016; Martin, 2006; Martin, 2012; McCutcheon et al., 2015). In the post-pandemic phase, universities are re-evaluating how to uphold integrity while respecting student rights, often moving toward open-book assessments or authentic assessments (like projects and portfolios) that are less susceptible to cheating.

Institutional Innovations and Responses

In response to these challenges and changes, higher education institutions worldwide have implemented a range of innovations and strategies. One key area has been faculty development. Recognizing that many instructors needed support to excel in online/hybrid teaching, universities ramped up training programs, webinars on online pedagogies, oneon-one instructional design consultations, and communities of practice for sharing tips on using Zoom, LMS features, or engagement tools (Mercader, 2020; Mertala, 2020; Meyers et al., 2013; Miake-Lye et al., 2016). Professional development that once might have been optional suddenly became mission-critical. Some institutions created "rapid response" instructional design teams or expanded their centers for teaching and learning to help redesign courses for digital formats almost overnight. The collective increase in pedagogical upskilling is an enduring positive outcome; faculty, even those initially technophobic, have generally emerged more digitally competent and pedagogically versatile than before the pandemic.

Another institutional response has been investment in infrastructure and tools. Universities upgraded their network capacities, provided better VPN and remote access to campus resources, and equipped classrooms with lecture capture and video conferencing hardware to be ready for hybrid teaching. Many adopted new software solutions, from virtual lab platforms for science courses to online whiteboards for math problem solving, often negotiating campus-wide licenses to ensure all students and staff had access (Miles & Huberman, 1994; Mizumoto & Eguchi, 2023;

Mohammadyari & Singh, 2015; Moher et al., 2009). The use of cloud-based collaboration suites (Microsoft Teams, Google Workspace) was institutionalized in many places as part of everyday academic workflow. Moreover, the pandemic spurred interest in analytics to identify and support struggling students: with less in-person contact, some universities leaned on LMS learning analytics to flag students who weren't logging in or completing work, triggering interventions.

Policy adjustments were also made. During the height of COVID, many universities offered more flexible grading policies (e.g., pass/fail options) and lenient withdrawal deadlines. While those specific measures may have been temporary, they signaled a shift toward more flexible academic policies that in some cases carried forward. For instance, some institutions have maintained more flexible attendance policies or remote attendance options when students are ill, recognizing that the capability exists and can prevent students from falling behind (Mokmin & Ibrahim, 2021; Nassuora, 2012; Nelson Laird & Kuh, 2005; Ng, 2012). There's also been an expansion of policies around "digital accommodations." Students with disabilities or those needing accommodations found that some needs were better met in an online environment (like being able to adjust font sizes or use screen readers easily); as courses return to in-person, there is pressure to keep the positive aspects of digital accessibility going.

The pandemic also accelerated the adoption of Open Educational Resources (OER) and digital resources as faculty sought cost-effective, easily distributable materials for remote students. Governments and consortia in various countries launched initiatives to curate and share digital learning content, sometimes as part of emergency response (e.g., national digital repositories). These efforts likely have a lasting effect, broadening instructors' awareness of OER and willingness to adopt or contribute to them in lieu of traditional textbooks. In terms of institutional strategy, many universities took the pandemic as a wake-up call to formalize their online learning offerings (Nguyen et al., 2015; Nicholas et al., 2015; Nikou & Economides, 2018; Nikou, Brännback, & Widén, 2018; Nikou, Brännback, & Widén, 2019). Offices of digital learning, or new administrative roles like "Vice Provost for Digital Strategy," have been established to create long-term plans that embed online/hybrid education into the institution's mission. Some universities, for example, are creating parallel online versions of high-demand programs, reaching students who cannot be on campus, thus opening new revenue streams and fulfilling access missions.

The competitive landscape in higher education has also shifted - with online offerings, geographic boundaries blur, so institutions are collaborating through consortia or differentiating by quality of digital experience. A notable institutional response has been an increased emphasis on resilience and contingency planning (Nikou, Molinari, & Widén, 2020; Norris & Coutas, 2014; O'Flaherty & Phillips, 2015; O'Gorman et al., 2016). No longer is "business continuity for teaching" an abstract scenario; universities are actively developing contingency plans for future disruptions. This includes maintaining the capacity to go fully online on short notice,

ensuring every course has an LMS presence as a baseline, and training faculty in the use of these systems as part of standard practice. In effect, digital technology has become central to risk management in education.

The post-COVID era in higher education is characterized by a more blended and flexible approach to teaching and learning. The pandemic's jolt broke through longstanding inertia, convincing even skeptics of the viability (and sometimes superiority) of online and hybrid methods for certain contexts. Hybrid learning is now "a necessary trend in future teaching reform", carrying multiple advantages, though it must be continuously optimized to address its shortcomings and ensure student success. Institutions have learned from the challenges - addressing engagement drops by refining pedagogy, closing digital divides with targeted support, and revising policies to be more student-centric (O'Mara-Eves et al., 2014; Oliver & de St Jorre, 2018; Park et al., 2020; Pastore & Andrade, 2019). The crucible of COVID-19 has ultimately accelerated innovation, forcing higher education to modernize and adapt pedagogically and technologically at an unprecedented pace. While the sudden disruption was fraught with difficulties, it yielded a higher education landscape arguably more open to change and more attuned to the possibilities of technology in fulfilling educational missions. The next section turns to the future, considering how these transformations set the stage for ongoing developments and the broader trajectories in educational technology, including the ethical, inclusive, and personalized learning imperatives that lie ahead.

6. Future Trajectories of Ethical Considerations, Inclusion, Personalization and Policy

Looking forward, the trajectory of educational technology in higher education will be shaped by a convergence of advancing technologies and evolving societal expectations. Key themes that emerge in projecting the future of EdTech include a heightened focus on ethical considerations (particularly around data and AI), a commitment to inclusion and equity in digital learning, the pursuit of personalization through adaptive learning and analytics, and the development of robust policy frameworks to govern and guide the use of technology in academia (Payne, 2017; Pekrun & Linnenbrink-Garcia, 2012; Peres et al., 2023; Popenici, 2013). In this final section, we discuss these trajectories, recognizing that the choices made in these areas will profoundly influence how technology transforms higher education in the coming years.

Ethical and Privacy Considerations

As technology becomes ever more ingrained in higher education, ethical questions multiply. Universities are custodians of vast amounts of sensitive data - from student academic records to behavioral data collected through learning platforms, and the use of this data raises issues of privacy, consent, and security (Price et al., 2007; Quin, 2017; Rabah, 2015; Rachmadtullah et al., 2020). A consistent warning from global analyses is that governance and regulation around

educational technology have not kept pace with innovation. For example, UNESCO's 2023 Global Education Monitoring report highlighted a "lack of appropriate governance and regulation" of technology in education and issued an urgent call for ethical use of EdTech. One pressing concern is data privacy. Many edtech tools used in universities are provided by third-party companies (LMS vendors, proctoring services, cloud software), which often collect user data.

There is a risk that student data could be monetized, misused, or breached. Indeed, during the pandemic, an analysis found that 89% of 163 education technology products recommended for online learning could surveil children or students in ways that compromised privacy. In higher education, where adult students are involved, the principle remains that students should not have to surrender their personal data or be subjected to opaque algorithms as a condition of learning (Rashid & Asghar, 2016; Redecker, 2017; Redmond et al., 2018; Reeve, 2012). This is spurring efforts to establish clearer data governance policies. In regions with strong data protection laws (like GDPR in Europe), universities are having to ensure all their tools comply and that students are informed about what data is collected and for what purpose. Ethical use guidelines increasingly accompany learning analytics initiatives, emphasizing transparency (students should know what data is used to track their learning), benefit (data use should aim to improve student success, not punish), and user control (opportunities to opt out or correct data).

The rise of AI in education brings additional ethical dimensions. AI algorithms can inadvertently perpetuate biases present in their training data, leading to unequal or unfair outcomes. For instance, an AI used to screen university admissions or scholarship applications could reflect societal biases unless carefully audited (Reeve & Tseng, 2011; Reschly & Christenson, 2012; Ritzhaupt et al., 2020; Rosman et al., 2018). In classroom applications, an AI tutor might unknowingly give less thorough answers about topics it has less data on, which could correlate with underrepresented perspectives, thereby narrowing a student's exposure. As generative AI tools (discussed in Section 3) become integrated, issues of authorship and intellectual honesty surface: Should AI cogenerated content be credited to an AI? How do we ensure academic integrity when AI can assist in everything? There are also potential mental health and social implications of AI companions or tutors, might students become socially isolated or overly dependent on AI feedback? And concerningly, the widespread adoption of AI could threaten certain academic jobs (e.g., teaching assistants, graders) in the long run, raising ethical questions about labor and the role of humans in teaching.

To navigate these, educational institutions will likely formulate AI ethics guidelines akin to what some tech companies have done, tailored to academia's values. For example, guidelines might specify that AI should augment, not replace, human instructor feedback, or that decisions significantly affecting students (like grading) should not be made by AI alone without human oversight. There are calls for "balanced regulation," encouraging innovation with AI in teaching but setting guardrails to mitigate risks. Faculty themselves will

need ethical training on AI: to understand what biases or errors models might have and to avoid over-reliance on unvetted AI outputs in teaching materials (Salaber, 2014; Saldaña, 2003; Sancho-Gil et al., 2020; Santos & Serpa, 2017).

Cybersecurity is an ethical imperative, as cyber attacks on universities not only disrupt operations but can expose personal data. With more of higher education online, the attack surface is larger. Ethical stewardship means investing in strong cybersecurity measures and training the academic community in digital hygiene (for instance, guarding against phishing which can lead to breaches). Some universities are including basic cybersecurity awareness in their digital literacy programs for students and mandating training for staff, noting that only a minority of teacher training programs currently cover topics like cybersecurity despite the increasing threats (Sarrab et al., 2013; Schindler et al., 2017; Selwyn, 2015; Selwyn, 2016a). The future trajectory of EdTech will be significantly influenced by how well institutions address these ethical considerations. The potential benefits of technology for learning are immense, but without careful attention to privacy, equity, and the humane use of AI, those benefits could be undermined by loss of trust or harm to stakeholders. The push for ethics is essentially a push to ensure technology use aligns with academic values of integrity, fairness, and respect for persons.

Inclusion and Equitable Access

Another major trajectory is making educational technology inclusive, ensuring that all students, regardless of background, disability, or location, can benefit equally from digital learning. The pandemic starkly exposed the unequal access to technology across and within societies. Bridging the digital divide is thus a paramount goal moving forward (Selwyn, 2016b; Shields & Chugh, 2018; Shonfeld & Ronen, 2015; Silber-Varod et al., 2019). On a global scale, this involves not only policy advocacy (e.g., governments and international bodies investing in higher education broadband infrastructure, subsidizing devices for low-income students) but also thoughtful design of digital learning experiences that accommodate varying levels of connectivity. For instance, future course designs might include low-bandwidth versions of materials (such as text transcripts in addition to video content) for students in bandwidth-constrained environments.

There is also momentum in projects like expanding Open Educational Resources in multiple languages to diversify content. As noted, currently an overwhelming proportion of online academic content is in English and from Western sources, which can marginalize non-English speakers and culturally diverse perspectives. International collaborations and funding are likely to continue for localizing content, translating major MOOCs into other languages, or encouraging the creation of OER by educators in the Global South to add to the global commons of knowledge (Ikpeze, 2007; Hunsu, Adesope, & Bayly, 2016; Kahu, 2013; Jeffrey, 2020). This addresses inclusion not just in access but in relevance: students should see their own cultures and contexts reflected in digital curricula.

Inclusion also prominently includes accessibility for students with disabilities. Technology, when properly implemented, can dramatically improve access to education for those with visual, hearing, motor, or cognitive impairments (Hu & Kuh, 2002; Johnston & Webber, 2003; Jones, 2020; Ivala & Gachago, 2012). In fact, accessible and assistive technologies are an area of rapid advancement: screen readers and text-to-speech for the visually impaired, captioning and signlanguage avatars for the deaf, eye-tracking and voice control for those with mobility challenges, etc. A survey found that about 87% of visually impaired adults reported that accessible technology devices were replacing traditional assistive tools - a testament to the power of mainstream tech (like smartphones with accessibility features) to empower learners with disabilities.

Higher education institutions are increasingly adopting universal design for learning (UDL) principles in their digital content, which means designing course materials and activities that are usable by the widest range of students without need for adaptation. For example, providing captions for all video lectures (benefiting not only deaf students but also second-language learners or anyone in a noisy environment), ensuring documents are screen-reader friendly, offering multiple means of engagement and expression (like allowing either a written essay or a recorded oral presentation for an assignment, thereby accommodating different strengths and needs). Laws and policies are reinforcing this: many countries have legal requirements for web accessibility that now extend to e-learning content, and universities have faced lawsuits when their digital materials were not accessible to disabled students. Thus, future edtech development is likely to bake in accessibility from the start rather than as an afterthought.

Another inclusion dimension is socioeconomic. Even within wealthy nations, low-income and first-generation college students may be less familiar with navigating digital systems, or may have more constraints (like needing to work jobs, thus valuing flexible online options). Ensuring inclusive EdTech means providing training and orientation for those less digitally experienced, effectively, not assuming all students are "digital natives" with equal skill. Mentoring programs or bridge courses in digital skills can help level the field. It also means deploying technology to support diverse learners: for example, analytics can be used to proactively identify students who might be struggling (often first-gen or otherwise at-risk students) and trigger supportive interventions (tutoring, counseling), an approach that some refer to as "data-informed equity" efforts (Hew, Lan, Tang, Jia, & Lo, 2019; Howard, Ma, & Yang, 2016; Kahn, 2014; Joksimović et al., 2018).

Furthermore, inclusion encompasses pedagogical inclusion, making sure that technology use in class doesn't alienate or disadvantage some students. For instance, if a professor uses a fancy new app in class without ensuring everyone's device can handle it, students with older devices or less comfort might be left out. Or if participation moves to a Twitter discussion and some students don't use that platform, they might disengage. Therefore, educators are encouraged to be mindful and provide alternatives when using technology,

maintaining multiple channels for participation so that shy students or those with different learning styles are included (Sit et al., 2020; Skinner & Pitzer, 2012; Skulmowski et al., 2020; Smidt et al., 2014). In the future, we may also see AI and personalization (next subsection) used to foster inclusion by tailoring support to individual needs. Adaptive learning systems could help bridge preparatory gaps by giving extra practice to students who come in with weaker backgrounds, thus leveling the playing field in difficult gateway courses. Inclusion is not just a moral imperative but also tied to performance: diverse and inclusive learning environments enhance creativity and problem-solving. Ensuring EdTech contributes to inclusion will be central to fulfilling higher education's promise of equal opportunity.

Personalization and Adaptive Learning

A much-anticipated trajectory of educational technology is the move toward more personalized and adaptive learning experiences. The idea is to leverage AI and data to tailor education to the individual learner's pace, prior knowledge, interests, and learning style. In contrast to the one-size-fits-all lecture model, personalized learning aims to provide each student with the right content and support at the right time (Smith, 2006; Smith & Lambert, 2014; Solomonides, 2013; Sosa Neira et al., 2017). Technologies enabling this include adaptive learning software that adjusts difficulty based on performance, recommendation engines that suggest enrichment or remediation activities, and intelligent tutoring systems that give one-on-one style guidance. Current research and implementations are promising. AI-driven adaptive learning platforms (used in subjects like math, computer science, language learning, etc.) have shown improvements in student engagement and outcomes by providing practice that is neither too easy (causing boredom) nor too hard (causing frustration).

These systems often continuously assess the student's mastery of fine-grained concepts and use algorithms to decide what problem or lesson to give next (Sullivan & Longnecker, 2014; Sumakul et al., 2020; Sun & Rueda, 2012; Sun et al., 2008). For example, an adaptive math platform might notice a student hasn't mastered quadratic factorization, so it provides more practice there and delays moving on to the quadratic formula until the foundational skill is solid. In higher education, introductory courses with diverse student preparedness (like introductory calculus or general chemistry) stand to benefit greatly from such adaptivity, potentially reducing failure rates by not leaving weaker students behind and not holding back advanced students.

Personalization also extends to adaptive pathways through curricula. In the future, degrees might be more customized - students could test out of what they already know (with the help of competency-based assessments possibly facilitated by AI evaluation) and spend more time on areas they need or care about. Micro-credentials and stackable modules could allow learners to personalize their educational journeys, a process orchestrated by sophisticated advising systems that consider a student's goals, strengths, and job market trends. Already, we see the emergence of AI-based academic

advisors that can suggest optimal course schedules or warn if a student's performance indicators suggest they should adjust their study plan (Szabo & Schwartz, 2011; Tamim et al., 2011; Tang & Chaw, 2016; Teo et al., 2008). Another angle is personalized feedback. AI tools can already provide instant feedback on assignments (like pointing out grammar errors or even assessing the structure of an essay's argument). As natural language processing improves, such feedback will become more nuanced and content-aware, perhaps even giving suggestions on how to deepen an analysis or the clarity of an explanation. Timely, personalized feedback is known to enhance learning, and AI offers a way to deliver it at scale in large classes where human instructors can't possibly give detailed feedback to every draft or discussion comment (Terblanche et al., 2022; Turnbull et al., 2019; van Dis et al., 2023; Jacobs, 2006; Junco, 2012; Hromalik & Koszalka, 2018; Jeffrey et al., 2011).

A bold vision of personalization involves not only reacting to a student's needs but predicting them. With sufficient data, learning analytics might anticipate when a student is at risk of dropping out or failing a course, perhaps detecting disengagement patterns or dips in performance, and then automatically alert instructors or advisors to intervene (Júnior & Finardi, 2018; Jha et al., 2022; Jou, Lin, & Tsai, 2016; Järvelä et al., 2016). Such early warning systems are already deployed at some institutions, and as algorithms improve, they may become more accurate and less prone to false flags. The ethical use of these systems will be important (ensuring they don't stigmatize students or create self-fulfilling prophecies), but their potential to improve retention and success, particularly for students who might otherwise fall through the cracks, is significant.

Personalization also means recognizing different career and life goals. As higher education expands beyond traditional four-year degrees to lifelong learning (reskilling, upskilling in the workforce), technology will help personalize learning pathways that fit into busy adult lives. AI could, for instance, create a custom learning playlist: drawing from open courses, tutorials, and resources to help an individual acquire a specific skill set on demand, assessing their progress and adjusting the plan along the way. Of course, the quest for personalization must be balanced with communal aspects of learning. Part of higher education's value is networking, peer discussion, and collaborative learning. Over-personalization (each student on their own AI-curated island of content) could undermine these if not managed carefully. The likely scenario is a blend: core content and practice may be personalized, while higher-level discussions, projects, and social learning bring students together to apply knowledge in diverse teams, reflecting the reality that problem-solving in the real world is a collective effort.

Policy and Governance in Educational Technology

The complex landscape of educational technology requires thoughtful policy and governance to ensure that its deployment aligns with educational values and public interests. As mentioned, many observers note that policy frameworks have lagged behind the rapid tech integration in education.

Moving forward, we can expect a maturation of policies at multiple levels - institutional, national, and international. At the institutional level, universities are developing comprehensive digital strategies that articulate principles and procedures for EdTech use. This includes policies on digital accessibility (mandating that all electronic course content meet certain accessibility standards), policies on acceptable use of AI (for instance, some universities have already issued guidelines on how students and faculty can use ChatGPT, requiring transparency or forbidding it in certain assessments), and policies on data protection (aligning with laws like GDPR or crafting internal rules on data retention and sharing). We also see governance structures being set up, like committees or task forces on technology-enhanced learning that involve faculty, IT staff, student representatives, and administrators. These bodies can evaluate new tools (checking for privacy, equity, efficacy), manage enterprise software procurement with ethical considerations, and oversee training and support efforts. Given the pace of change, having agile governance that can update policies frequently is valuable; some schools have instituted annual or biennial reviews of EdTech policies.

Nationally, governments and accreditation agencies are shaping policy by setting standards for quality in online education and by funding or regulating certain technologies. For instance, some countries' education ministries have frameworks for online program quality that universities must follow to have their online degrees recognized. Issues like ensuring proctoring integrity, verifying student identity in online exams, or credit-hour equivalencies for asynchronous learning are being codified. Additionally, public policy is concerned with the affordability of EdTech, there are drives in various nations to promote open textbooks and reduce the cost burden on students for expensive learning software. We may see more policies that encourage or even require open licensing of educational materials produced with public funds (as has been done in some jurisdictions), further boosting the OER movement. There is also likely to be continued public investment in EdTech infrastructure, for example, national research and education networks (NRENs) that provide high-speed internet to campuses may be upgraded, national digital libraries expanded, or even government-sponsored LMS platforms offered for smaller institutions that can't afford commercial solutions. In developing countries, bridging the gap may involve public-private partnerships to deliver technology and connectivity to universities and to negotiate affordable access to digital journals and educational software.

Internationally, bodies like UNESCO, the OECD, and others are increasingly vocal about EdTech governance. UNESCO's call for better regulation implies working towards international guidelines or principles (similar to their earlier work on AI ethics which produced a global recommendation in 2021). We might anticipate an international consensus on ethical AI in education or data privacy standards that member states agree to adopt, providing a normative framework that transcends borders. Such frameworks could help ensure that as global EdTech companies operate across countries, they adhere to baseline standards for privacy, non-discrimination, and pedagogical quality. Another policy aspect is addressing the digital divide through broader

socio-economic policies: affordable internet as a right, subsidy programs for students (the way textbooks are sometimes subsidized could extend to digital devices and connectivity). For example, classifying the internet as a public utility could pave the way for more equitable access, which directly impacts educational access, indeed, as one UNESCO report suggests, the right to education in the modern era is increasingly intertwined with the right to meaningful connectivity.

Ethical considerations discussed earlier may also be reflected in policy: data privacy laws will likely get stricter and more specific regarding educational data. Already only 16% of countries explicitly guarantee data privacy in education by law; that number is likely to grow as awareness increases. We may also see legislation around student rights in automated decision-making - for example, if an algorithm flags a student as likely to fail, policies might give the student the right to be informed and to appeal decisions or request human review, akin to provisions in some data protection laws. On the labor and economic side, policy might have to grapple with shifts like remote teaching labor (who can teach courses from anywhere for a university, raising questions about labor laws and quality control) or the use of AI that could affect academic employment. Ensuring that technological advancement in higher ed does not come at the cost of exploitative labor practices (like relying heavily on poorly paid online adjuncts or replacing support staff with AI without re-skilling) could become a topic of policy and union negotiations.

The trajectory of educational technology in higher education is heading toward a more mature, regulated, and conscientious phase. The heady days of uncritical edtech enthusiasm have given way to a recognition that technology's integration must be guided by ethical, inclusive, and pedagogical imperatives. The future will likely see technology that is more seamlessly woven into learning - personalized, data-informed, and flexible - while being kept in check by strong ethical standards and governance so that it truly serves the goals of education. Higher education stands at the cusp of what some dub the "Education 4.0" era, characterized by intelligent systems, personalization, and lifelong learning pathways. If the lessons of the past are heeded, this era will harness those innovations not as panaceas, but as tools wielded by thoughtful educators within frameworks that uphold human dignity, equity, and academic integrity. In doing so, universities can ensure that the digital transformation of higher education fulfills its promise: expanding and enhancing learning for all, while preserving the core values that define the academic enterprise.

7. Conclusion

Educational technology has become a driving force in the transformation of higher education globally, ushering in an era of unparalleled access, innovation, and complexity. This narrative review has traced the arc of that transformation, from the early adoption of broadcast media and mainframe teaching machines to today's sophisticated digital ecosystems infused with AI and interactive learning designs. The evolution and current state of EdTech reveal a higher education

sector that is simultaneously empowered by technology's reach and grappling with its challenges. Universities have leveraged online platforms to educate millions beyond their walls and to enrich on-campus learning, confirming that digital tools can dramatically enhance flexibility and resource availability in higher education. Yet, this expansion has also highlighted persistent disparities: without targeted efforts, the benefits of EdTech can bypass those lacking connectivity or digital fluency, leaving a "second digital divide" in educational outcomes. Central to reaping technology's benefits are the foundational competencies of digital literacy and information literacy. These literacies equip students and faculty to navigate the digital deluge critically and effectively, to treat information not as a passive influx but as material to be questioned, validated, and creatively used. In the absence of these competencies, the glitter of high-tech tools could lead to shallow learning or vulnerability to misinformation.

Conversely, when higher education prioritizes digital and information literacy, through curriculum integration, library services, and professional development, it lays the groundwork for a scholarly community that can harness technology with discernment and ethical consideration. The academic discourse consistently returns to the idea that technology in education is not a magic substitute for poor pedagogy or limited skills; rather, it is a catalyst whose impact is mediated by the human and institutional context. This underscores why investments in training, support, and literacy are just as crucial as investments in hardware and software.

The emergence of Generative AI like ChatGPT epitomizes both the promise and the perturbations of contemporary EdTech. On one hand, generative AI tools have demonstrated novel ways to support learning - simulating one-onone tutoring, providing instantaneous feedback and resources, and freeing educators from some routine tasks. They hint at a future where learning is more personalized and learning support more omnipresent. On the other hand, their disruptive entry has thrown into sharp relief the core values of education. The ease with which AI can produce answers or essays has compelled educators to re-examine how they assess learning and to articulate more clearly the goals of those assessments (e.g., emphasizing the learning process and originality). Institutions have responded with a mixture of caution and creativity: updating honor codes, designing "AIproof" assessments, and conversely, integrating AI literacy so that students graduate with an understanding of how to work alongside AI responsibly. In broader perspective, generative AI is a microcosm of EdTech's trajectory - a powerful tool that can either augment human learning or, if misused, erode the integrity of the educational process. The academic community's ongoing dialog and research on AI in education will likely serve as a model for addressing future technological disruptions: proactive engagement, critical evaluation of outcomes, and an unwavering commitment to pedagogy over product.

Digital pedagogy, as elaborated, has matured into a field blending instructional design, cognitive science, and technology. The pandemic in particular accelerated acceptance of pedagogical models that were once avant-garde, such as

flipped classrooms, hybrid courses, and fully online degrees demonstrating that when well-designed, these models can rival the traditional classroom in effectiveness. The review highlighted that effective digital pedagogy is not about the proliferation of tools but about the intentional alignment of technology with learning objectives. Frameworks like TPACK and UDL offer educators guiding stars to ensure that technology integration remains subordinate to, and supportive of, the learning aims. Meanwhile, the fundamental principles of active learning and student engagement have found even stronger footing through technology, as interactive tools enable immediate feedback, collaborative knowledge construction, and authentic learning experiences (virtual labs, simulations) that were difficult to scale up in the past. We also saw that digital pedagogy extends to reconsidering the spatial-temporal boundaries of learning, learning can happen synchronously or asynchronously, in physical or virtual spaces, and often in a blend of these. The post-COVID "new normal" is a testament to that hybridization, with institutions increasingly adopting policies and infrastructures to support multi-modal learning continuity.

The post-pandemic transformations discussed reveal a higher education system that has internalized some hard-won lessons. Flexibility and resilience are now part of strategic planning; faculty and students alike have developed greater agility in switching between in-person and remote modalities. Crucially, the shared global experience of emergency remote teaching has fostered a more collaborative spirit in the academic world regarding EdTech: a rich exchange of practices occurred via webinars, publications, and social media, leading to rapid diffusion of what worked and what didn't in online pedagogy. This collective learning has improved preparedness for future disruptions and seeded ongoing improvements (for instance, many instructors continue to record lectures or use online discussion forums, recognizing these as value-adds for students). However, the pandemic also surfaced cautionary tales about student well-being, engagement, and equity when technology is deployed at scale without sufficient support. The imperative now is to consolidate the positive innovations while earnestly addressing the gaps - be they in digital access, faculty workload, or student mental health in a tech-mediated educational environment.

Finally, in looking to the future trajectories, the review underscored the importance of embedding ethics, inclusion, personalization, and policy into the evolution of educational technology. EdTech in higher education will likely be increasingly characterized by AI-driven personalization, immersive learning environments (perhaps the rise of educational uses of AR/VR, the "metaverse" classroom), and data-informed decisions. But alongside this, there is growing recognition that robust frameworks must guide these developments: privacy laws, ethical AI principles, accessibility standards, and governance mechanisms at institutional and international levels. It is telling that technology in education is now as much a topic for policy analysts and ethicists as it is for technologists. This indicates a maturation, a shift from a focus on what technology can do to a focus on what it should do in the context of educational missions and social values. The integration of technology in higher education is an ongoing

narrative of transformation, one that is global in its sweep yet local in its implementation. Cultural, economic, and institutional contexts will continue to shape how EdTech is adopted and with what results. A unifying thread, however, is that higher education stands to profoundly benefit from technology when it is wielded judiciously: expanding reach to learners across the world, enriching pedagogy with new methods of engagement, and equipping students with the digital competencies needed in the twenty-first century. Achieving these gains requires sustained effort: investing in

infrastructure and literacy, fostering a culture of pedagogical innovation, and implementing policies that ensure technology use is equitable and aligned with academic integrity. As this review has shown, the past and present provide both inspiration and caution. If the future of educational technology in higher education is navigated with wisdom, balancing innovation with inclusion, data with ethics, and personalization with community, it holds the promise of a more accessible, effective, and human-centered higher education landscape for generations to come.

Funding Information:

This research did not receive any specific funding from any public, commercial, or non-profit agency.

Disclosure Statement:

No material or relevant stake relating to this research was disclosed by the author(s).

Competing Interest:

No potential conflict of interest was reported by the author(s).

Data Availability Statement:

Data sharing is not applicable to this research article as no new data were created or analysed in this study.

References

- Aavakare, M., & Nikou, S. (2020). Challenging the concept of digital Nativeness-through the assessment of information literacy and digital literacy. In international conference on well-being in the information society (pp. 211-225). Cham: Springer.
- Abdelwahab, H. R., Rauf, A., & Chen, D. (2022). Business students' perceptions of Dutch higher education institutions in preparing them for artificial intelligence work environments. *Industry and Higher Education*, 37(1), 22-34.
- Abdool, P. S., Nirula, L., Bonato, S., Rajji, T. K., & Silver, I. L. (2017). Simulation in undergraduate psychiatry: Exploring the depth of learner engagement. Academic Psychiatry: the Journal of the American Association of Directors of Psychiatric Residency Training and the Association for Academic Psychiatry, 41(2), 251-261.
- Abu-Al-Aish, A., & Love, S. (2013). Factors influencing students' acceptance of m-learning: An investigation in higher education. The International Review of Research in Open and Distance Learning, 14(5), 82-107.
- Adiguzel, T., Kaya, M. H., & Cansu, F. K. (2023). Revolutionizing education with AI: Exploring the transformative potential of ChatGPT. Contemporary Educational Technology, 15(3), ep429.
- Ahmad, F., Widén, G., & Huvila, I. (2020). The impact of workplace information literacy on organizational innovation: An empirical study. *International Journal of Information Management*, 51.
- Ajzen, I. (1985). From intentions to actions: A theory of planned behaviour. In action control (pp. 11-39). Berlin, Heidelberg: Springer.
- Ala-Mutka, K. (2011). Mapping digital competence: Towards a conceptual understanding European Commission, Joint Research Centre, Institute for Prospective Technological Studies, Seville, 1-60.
- Alateyah, S., Crowder, R. M., & Wills, G. B. (2013). Factors affecting the citizen's intention to adopt e-government in Saudi Arabia. International Journal of Social, Human Science and Engineering, 7(9), 80-85.
- Ali, R., & Gupta, S. (2019). Investigating information literacy in business majors. In proceedings of the 2019 AIS SIGED international
 conference on information systems education and research.
- Alioon, Y., & Delialioğlu, Ö. (2017). The effect of authentic m-learning activities on student engagement and motivation. British Journal
 of Educational Technology, 32, 121.
- Almaiah, M. A., Alamri, M. M., & Al-Rahmi, W. (2019). Applying the UTAUT model to explain the students' acceptance of Mobile learning system in higher education. IEEE Access, 7, 174673-174686.
- Alrasheedi, M., Capretz, L. F., & Raza, A. (2015). A systematic review of the critical factors for success of mobile learning in higher education (university students' perspective). Journal of Educational Computing Research, 52(2), 257-276.
- Al-Sakkaf, A., Omar, M., & Ahmad, M. (2019). A systematic literature review of student engagement in software visualization: A
 theoretical perspective. Computer Science Education, 29(2-3), 283-309.
- Andrew, L., Ewens, B., & Maslin-Prothero, S. (2015). Enhancing the online learning experience using virtual interactive classrooms. Australian Journal of Advanced Nursing, 32(4), 22-31.
- Anthonysamy, L., Koo, A. C., & Hew, S. H. (2020). Self-regulated learning strategies in higher education: Fostering digital literacy for sustainable lifelong learning. Education and Information Technology, 25, 2393-2414.
- Antonenko, P. D. (2015). The instrumental value of conceptual frameworks in educational technology research. Educational Technology Research and Development, 63(1), 53-71.

- Appleton, J. J., Christenson, S. L., & Furlong, M. J. (2008). Student engagement with school: Critical conceptual and methodological issues of the construct. Psychology in the Schools, 45(5), 369-386.
- Arnold, D., & Sangrà, A. (2018). Dawn or dusk of the 5th age of research in educational technology? A literature review on (e-)leadership for technology-enhanced learning in higher education (2013-2017). International Journal of Educational Technology in Higher Education, 15(1), 1-29.
- Arnold, N., & Paulus, T. (2010). Using a social networking site for experiential learning: Appropriating, lurking, modeling and community building. *Internet and Higher Education*, 13(4), 188-196.
- Astin, A. W. (1984). Student involvement: A developmental theory for higher education. Journal of College Student Development, 25(4), 297-308.
- Astin, A. W. (1999). Student involvement: A developmental theory for higher education. Journal of College Student Development, 40(5), 518-529.
- Atlas, S. (2023). ChatGPT for higher education and professional development: A guide to conversational AI.
- Atmacasoy, A., & Aksu, M. (2018). Blended learning at pre-service teacher education in Turkey: A systematic review. Education and Information Technologies, 23(6), 2399-2422.
- Avcı, Ü., & Ergün, E. (2019). Online students' LMS activities and their effect on engagement, information literacy and academic performance. *Interactive Learning Environments*, 1-14.
- Azevedo, R. (2015). Defining and measuring engagement and learning in science: Conceptual, theoretical, methodological, and analytical issues. Educational Psychologist, 50(1), 84-94.
- Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning.
- Bailey, D., Southam, A., & Costley, J. (2021). Digital storytelling with chatbots: Mapping L2 participation and perception patterns. Interactive Technology and Smart Education, 18(1), 85-103.
- Bali, M., Cronin, C., & Jhangiani, R. S. (2020). Framing open educational practices from a social justice perspective. *Journal of Interactive Media in Education*.
- Bandura, A. (1971). Social learning theory. New York: General Learning Press.
- Barak, M. (2018). Are digital natives open to change? Examining flexible thinking and resistance to change. Computers & Education, 121, 115-123.
- Barak, M., & Levenberg, A. (2016). Flexible thinking in learning: An individual differences measure for learning in technology-enhanced environments. Computers & Education, 99, 39-52.
- Baron, P., & Corbin, L. (2012). Student engagement: Rhetoric and reality. Higher Education Research and Development, 31(6), 759-772.
- Bartolomé, A., Castañeda, L., & Adell, J. (2018). Personalisation in educational technology: The absence of underlying pedagogies. International Journal of Educational Technology in Higher Education.
- Baydas, O., Kucuk, S., Yilmaz, R. M., Aydemir, M., & Goktas, Y. (2015). Educational technology research trends from 2002 to 2014. Scientometrics, 105(1), 709-725.
- Bayrakdaroğlu, A., & Bayrakdaroğlu, F. (2017). A comparative analysis regarding the effects of financial literacy and digital literacy on internet entrepreneurship intention. Journal of Entrepreneurship and Development, 12(2), 27-38.
- Bedenlier, S., Bond, M., Buntins, K., Zawacki-Richter, O., & Kerres, M. (2020a). Facilitating student engagement through educational technology in higher education: A systematic review in the field of arts & humanities. *Australasian Journal of Educational Technology*, 36(4), 27-47.
- Bedenlier, S., Bond, M., Buntins, K., Zawacki-Richter, O., & Kerres, M. (2020b). Learning by Doing? Reflections on Conducting a Systematic Review in the Field of Educational Technology. In O. Zawacki-Richter, M. Kerres, S. Bedenlier, M. Bond, & K. Buntins (Eds.), Systematic Reviews in Educational Research (Vol. 45, pp. 111-127). Wiesbaden: Springer Fachmedien Wiesbaden.
- Ben-Eliyahu, A., Moore, D., Dorph, R., & Schunn, C. D. (2018). Investigating the multidimensionality of engagement: Affective, behavioral, and cognitive engagement across science activities and contexts. Contemporary Educational Psychology, 53, 87-105.
- Betihavas, V., Bridgman, H., Kornhaber, R., & Cross, M. (2016). The evidence for 'flipping out': A systematic review of the flipped classroom in nursing education. Nurse Education Today, 38, 15-21.
- Bhattacharya, K., Bhattacharya, A. S., Bhattacharya, N., Yagnik, V. D., Garg, P., & Kumar, S. (2023). ChatGPT in surgical practice— A new kid on the block. *Indian Journal of Surgery*.
- Bigatel, P., & Williams, V. (2015). Measuring student engagement in an online program. Online Journal of Distance Learning Administration, 18(2), 9.
- Biggs, J. (1999). What the student does: Teaching for enhanced learning. Higher Education Research & Development, 18(1), 57-75.
- Biggs, J. B. (2011). Teaching for quality learning at university: What the student does. McGraw-Hill Education (UK).
- Bishop, M. J., Boling, E., Elen, J., & Svihla, V. (Eds.). (2020). Handbook of research in educational communications and technology. Springer.
- Biswas, S. (2023). ChatGPT and the future of medical writing. Radiology, 307(2), e223312.
- Blau, I., & Shamir-Inbal, T. (2017). Digital competences and long-term ICT integration in school culture: The perspective of elementary school leaders. Education and Information Technologies, 22(3), 769-787.
- Bodily, R., Leary, H., & West, R. E. (2019). Research trends in instructional design and technology journals. British Journal of Educational Technology, 50(1), 64-79.
- Boekaerts, M. (2016). Engagement as an inherent aspect of the learning process. Learning and Instruction, 43, 76-83.
- Bolden, B., & Nahachewsky, J. (2015). Podcast creation as transformative music engagement. *Music Education Research*, 17(1), 17-33.
- Bond, M. (2018). Helping doctoral students crack the publication code: An evaluation and content analysis of the Australasian Journal of Educational Technology. Australasian Journal of Educational Technology, 34(5), 168-183.
- Bond, M., & Bedenlier, S. (2019a). Facilitating Student Engagement Through Educational Technology: Towards a Conceptual Framework. Journal of Interactive Media in Education, 2019(1), 1-14.
- Bond, M., Marín, V. I., Dolch, C., Bedenlier, S., & Zawacki-Richter, O. (2018). Digital transformation in German higher education: Student and teacher perceptions and usage of digital media. *International Journal of Educational Technology in Higher Education*.

- Bond, M., Zawacki-Richter, O., & Nichols, M. (2019b). Revisiting five decades of educational technology research: A content and authorship analysis of the British Journal of Educational Technology. British Journal of Educational Technology, 50(1), 12-63.
- Bouta, H., Retalis, S., & Paraskeva, F. (2012). Utilising a collaborative macro-script to enhance student engagement: A mixed method study in a 3D virtual environment. Computers & Education, 58(1), 501-517.
- Bower, M. (2016). Deriving a typology of web 2.0 learning technologies. British Journal of Educational Technology, 47(4), 763-777.
- Boyle, E. A., Connolly, T. M., Hainey, T., & Boyle, J. M. (2012). Engagement in digital entertainment games: A systematic review. Computers in Human Behavior, 28(3), 771-780.
- Boyle, E. A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., ... Pereira, J. (2016). An update to the systematic literature review of empirical evidence of the impacts and outcomes of computer games and serious games. Computers & Education, 94, 178-192.
- Bozkurt, A., & Sharma, R. C. (2020). Education in normal, new normal, and next normal: Observations from the past, insights from
 the present and projections for the future. Asian Journal of Distance Education.
- Broadbent, J., & Poon, W. L. (2015). Self-regulated learning strategies & academic achievement in online higher education learning environments: A systematic review. The Internet and Higher Education, 27, 1-13.
- Broadbent, J., Panadero, E., Lodge, J. M., & de Barba, P. (2020). Technologies to enhance self-regulated learning in online and computer-mediated learning environments. In M. J. Bishop, E. Boling, J. Elen, & V. Svihla (Eds.), Handbook of research in educational communications and technology (pp. 37-52). Springer.
- Bruhn, E. (2016). Towards a framework for virtual internationalization. In European distance and e-learning network (EDEN) conference proceedings (No. 2, pp. 1-9). European Distance and E-Learning Network.
- Brunton, G., Stansfield, C., & Thomas, J. (2012). Finding relevant studies. In D. Gough, S. Oliver, & J. Thomas (Eds.), An introduction to systematic reviews, (pp. 107-134). Los Angeles: Sage.
- Bryman, A. (2007). The research question in social research: What is its role? International Journal of Social Research Methodology, 10(1), 5-20
- Bulu, S. T., & Yildirim, Z. (2008). Communication behaviors and trust in collaborative online teams. Educational Technology & Society, 11(1), 132-147.
- Bundick, M., Quaglia, R., Corso, M., & Haywood, D. (2014). Promoting student engagement in the classroom. Teachers College Record, 116(4)
- Caniglia, G., John, B., Bellina, L., Lang, D. J., Wiek, A., Cohmer, S., & Laubichler, M. D. (2018). The glocal curriculum: A model for transnational collaboration in higher education for sustainable development. *Journal of Cleaner Production*, 171, 368-376.
- Carvalho, A., Areal, N., & Silva, J. (2011). Students' perceptions of blackboard and Moodle in a Portuguese university. British Journal
 of Educational Technology, 42(5), 824-841.
- Castañeda, L., & Selwyn, N. (2018). More than tools? Making sense of the ongoing digitizations of higher education. International Journal of Educational Technology in Higher Education.
- Castañeda, L., & Selwyn, N. (2018). More than tools? Making sense of the ongoing digitizations of higher education. International Journal of Educational Technology in Higher Education, 15(1), 211.
- Chan, C.K.Y. (2023b). A Comprehensive AI Policy Education Framework for University Teaching and Learning.
- Chávez Herting, D., Cladellas Pros, R., & Castelló Tarrida, A. (2020). Habit and social influence as determinants of PowerPoint use in higher education: A study from a technology acceptance approach. *Interactive Learning Environments*, 1-17.
- Chen, J. L. (2011). The effects of education compatibility and technological expectancy on e-learning acceptance. Computers & Education, 57(2), 1501-1511.
- Chen, J., Wang, M., Kirschner, P. A., & Tsai, C. C. (2018). The role of collaboration, computer use, learning environments, and supporting strategies in CSCL: A meta-analysis. Review of Educational Research, 88(6), 799-843.
- Chen, P.-S. D., Lambert, A. D., & Guidry, K. R. (2010). Engaging online learners: The impact of web-based learning technology on college student engagement. *Computers & Education*, 54(4), 1222-1232.
- Chen, Y., Jensen, S., Albert, L. J., Gupta, S., & Lee, T. (2023). Artificial intelligence (AI) student assistants in the classroom: Designing chatbots to support student success. *Information Systems Frontiers*, 25, 161-182.
- Cheston, C. C., Flickinger, T. E., & Chisolm, M. S. (2013). Social media use in medical education: A systematic review. Academic Medicine: Journal of the Association of American Medical Colleges, 88(6), 893-901.
- Choi, M., Glassman, M., & Cristol, D. (2017). What it means to be a citizen in the internet age: Development of a reliable and valid digital citizenship scale. Computers & Education, 107, 100-112.
- Coates, H. (2007). A model of online and general campus-based student engagement. Assessment & Evaluation in Higher Education, 32(2), 121-141.
- Colwell, J., Hunt-Barron, S., & Reinking, D. (2013). Obstacles to developing digital literacy on the internet in middle school science instruction. *Journal of Literacy Research*, 45(3), 295-324.
- Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012). A systematic literature review of empirical evidence on computer games and serious games. *Computers & Education*, 59(2), 661-686.
- Cook, M. P., & Bissonnette, J. D. (2016). Developing preservice teachers' positionalities in 140 characters or less: Examining microblogging as dialogic space. Contemporary Issues in Technology and Teacher Education (CITE Journal), 16(2), 82-109.
- Creswell, J. W., & Plano Clark, V. L. P. (2017). Designing and conducting mixed methods research. Sage Publications.
- Crompton, H., & Burke, D. (2023). Artificial intelligence in higher education: The state of the field. *International Journal of Educational Technology in Higher Education*, 20(1), 22.
- Crompton, H., Burke, D., Gregory, K. H., & Gräbe, C. (2016). The use of mobile learning in science: A systematic review. Journal of Science Education and Technology, 25(2), 149-160.
- Cronin, C. (2017). Openness and praxis: Exploring the use of open educational practices in higher education. International Review of Research in Open and Distributed Learning: IRRODL, 18(5), 15-34.

- Crook, C. (2019). The "British" voice of educational technology research: 50th birthday reflection. British Journal of Educational Technology, 50(2), 485-489.
- Dahmash, A. B., Alabdulkareem, M., Alfutais, A., Kamel, A. M., Alkholaiwi, F., Alshehri, S., Zahrani, Y. A., & Almoaiqel, M. (2020).
 Artificial intelligence in radiology: Does it impact medical students preference for radiology as their future career? BJR Open, 2(1), 20200037
- Davies, M. (2014). Using the apple iPad to facilitate student-led group work and seminar presentation. Nurse Education in Practice, 14(4), 363-367.
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
- Dede, C. (2010). Comparing frameworks for 21st century skills. In J. Bellanca & R. Brandt (Eds.), 21st century skills (pp. 51-76).
 Bloomington, IN: Solution Tree Press.
- Delialioglu, O. (2012). Student engagement in blended learning environments with lecture-based and problem-based instructional approaches. Educational Technology & Society, 15(3), 310-322.
- DePaolo, C. A., & Wilkinson, K. (2014). Recurrent online quizzes: Ubiquitous tools for promoting student presence, participation and performance. Interdisciplinary Journal of E-Learning and Learning Objects, 10, 75-91.
- Desjardins, F., & Van Oostveen, R. (2015). Faculty and student use of digital technology in a 'laptop' university. In S. Carliner, C. Fulford, & N. Ostashewski (Eds.), EdMedia: World Conference on Educational Media and Technology 2015 (pp. 990-996). Montreal: Association for the Advancement of Computing in Education (AACE).
- Desjardins, R. (2001). The effects of learning on economic and social well-being: A comparative analysis. Peabody Journal of Education, 76(3-4), 222-246.
- Diep, N. A., Cocquyt, C., Zhu, C., & Vanwing, T. (2016). Predicting adult learners' online participation: Effects of altruism, performance expectancy, and social capital. Computers & Education, 101, 84-101.
- Doherty, K., & Doherty, G. (2018). Engagement in HCI. ACM Computing Surveys, 51(5), 1-39.
- Dohn, N. B., Markauskaite, L., & Hachmann, R. (2020). Enhancing knowledge transfer. In M. J. Bishop, E. Boling, J. Elen, & V. Svihla (Eds.), Handbook of research in educational communications and technology (pp. 73-96). Springer.
- Dron, I., & Anderson, T. (2014). Teaching crowds: Learning and social media. Athabasca University Press.
- Dunn, K. (2002). Assessing information literacy skills in the California State University: A progress report. The Journal of Academic Librarianship, 28(1-2), 26-35.
- Eccles, J. (2016). Engagement: Where to next? Learning and Instruction, 43, 71-75.
- Eccles, J., & Wang, M.-T. (2012). Part I commentary: So what is student engagement anyway? In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement, (pp. 133-145). Boston: Springer US.
- Eggmann, F., Weiger, R., Zitzmann, N. U., & Blatz, M. B. (2023). Implications of large language models such as ChatGPT for dental medicine. *Journal of Esthetic and Restorative Dentistry*.
- Eisenberg, M. B. (2008). Information literacy: Essential skills for the information age. DESIDOC journal of library & information technology, 28(2), 39-47.
- Englund, C., Olofsson, A. D., & Price, L. (2017). Teaching with technology in higher education: Understanding conceptual change and development in practice. Higher Education Research and Development, 36(1), 73-87.
- Englund, C., Olofsson, A. D., & Price, L. (2017). Teaching with technology in higher education: Understanding conceptual change and development in practice. Higher Education Research and Development, 36(1), 73-87.
- Eshet-Alkalai, Y. (2004). Digital literacy: A conceptual framework for survival skills in the digital era. Journal of educational multimedia and hypermedia, 13(1), 93-106.
- Essel, H. B., Vlachopoulos, D., Tachie-Menson, A., Johnson, E. E., & Baah, P. K. (2022). The impact of a virtual teaching assistant (chatbot) on students' learning in Ghanaian higher education. *International Journal of Educational Technology in Higher Education*, 19, 57.
- Fabian, K., Topping, K. J., & Barron, I. G. (2016). Mobile technology and mathematics: Effects on students' attitudes, engagement, and achievement. *Journal of Computers in Education*, 3(1), 77-104.
- Filsecker, M., & Kerres, M. (2014). Engagement as a volitional construct. Simulation & Gaming, 45(4-5), 450-470.
- Finn, J. (2006). The adult lives of at-risk students: The roles of attainment and engagement in high school (NCES 2006-328). Washington, DC: U.S. Department of Education, National Center for Education Statistics.
- Finn, J., & Zimmer, K. (2012). Student engagement: What is it? Why does it matter? In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement, (pp. 97-131). Boston: Springer US.
- Fischer, G., Lundin, J., & Lindberg, J. O. J. (2020). Rethinking and reinventing learning, education and collaboration in the digital age—from creating technologies to transforming cultures. The International Journal of Information and Learning Technology, 37(5), 241-252.
- Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behaviour: An introduction to theory and research. Reading, MA: Addison-Wesley.
- Foo, S., Majid, S., Azura Mokhtar, I., Zhang, X., Chang, Y.-K., Luyt, B., & Theng, Y. L. (2014). Information literacy skills of secondary school students in Singapore. Aslib Journal of Information Management, 66(1), 54-76.
- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research*, 18(1), 39-50.
- Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59-109.
- Fredricks, J. A., Filsecker, M., & Lawson, M. A. (2016). Student engagement, context, and adjustment: Addressing definitional, measurement, and methodological issues. Learning and Instruction, 43, 1-4.
- Fredricks, J. A., Wang, M.-T., Schall Linn, J., Hofkens, T. L., Sung, H., Parr, A., & Allerton, J. (2016). Using qualitative methods to develop a survey measure of math and science engagement. *Learning and Instruction*, 43, 5-15.
- Fukuzawa, S., & Boyd, C. (2016). Student engagement in a large classroom: Using technology to generate a hybridized problem-based learning experience in a large first year undergraduate class. Canadian Journal for the Scholarship of Teaching and Learning, 7(1).

- Garcia, A., & Lee, C. H. (2020). Equity-centered approaches to educational technology. In M. J. Bishop, E. Boling, J. Elen, & V. Svihla (Eds.), Handbook of research in educational communications and technology (pp. 247-261). Springer.
- Gayed, J. M., Carlon, M. K. J., Oriola, A. M., & Cross, J. S. (2022). Exploring an AI-based writing assistant's impact on English language learners. Computers and Education: Artificial Intelligence, 3, 100055.
- Georgina, D. A., & Hosford, C. C. (2009). Higher education faculty perceptions on technology integration and training. Teaching and Teacher Education, 25(5), 690-696.
- Ghalandari, K. (2012). The effect of performance expectancy, effort expectancy, social influence and facilitating conditions on acceptance of e-banking services in Iran: The moderating role of age and gender. Middle East Journal of Scientific Research, 12(6), 801-807.
- Gherhes, V., & Obrad, C. (2018). Technical and humanities students' perspectives on the development and sustainability of artificial intelligence (AI). Sustainability, 10(9), 3066.
- Ghotbi, N., Ho, M. T., & Mantello, P. (2022). Attitude of college students towards ethical issues of artificial intelligence in an international university in Japan. AI & Society, 37, 283-290.
- Gillissen, A., Kochanek, T., Zupanic, M., & Ehlers, J. (2022). Medical students' perceptions towards digitalization and artificial intelligence: A mixed-methods study. Healthcare, 10(4), 723.
- Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Chicago: Aldine.
- Gleason, J. (2012). Using technology-assisted instruction and assessment to reduce the effect of class size on student outcomes in undergraduate mathematics courses. College Teaching, 60(3), 87-94.
- Gong, B., Nugent, J. P., Guest, W., Parker, W., Chang, P. J., Khosa, F., & Nicolaou, S. (2019). Influence of artificial intelligence on Canadian medical students' preference for radiology specialty: A national survey study. *Academic Radiology*, 26(4), 566-577.
- Gough, D., Oliver, S., & Thomas, J. (2012). An introduction to systematic reviews. Los Angeles: Sage.
- Granberg, C. (2010). Social software for reflective dialogue: Questions about reflection and dialogue in student Teachers' blogs. Technology, Pedagogy and Education, 19(3), 345-360.
- Greenwood, L., & Kelly, C. (2019). A systematic literature review to explore how staff in schools describe how a sense of belonging
 is created for their pupils. Emotional and Behavioural Difficulties, 24(1), 3-19.
- Gross, M., & Latham, D. (2012). What's skill got to do with it? Information literacy skills and self-views of ability among first-year college students. Journal of the American Society for Information Science and Technology, 63(3), 574-583.
- Gullikson, S. (2006). Faculty perceptions of ACRL's information literacy competency standards for higher education. The Journal of Academic Librarianship, 32(6), 583-592.
- Gupta, M. L. (2009). Using emerging technologies to promote student engagement and learning in agricultural mathematics. *International Journal of Learning*, 16(10), 497-508.
- Gupta, R., Seetharaman, A., & Maddulety, K. (2020). Critical success factors influencing the adoption of digitalisation for teaching and learning by business schools. Education and Information Technologies, 25, 1-22.
- Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2017). A primer on partial least squares structural equation modelling (PLS-SEM) (2nd ed.). Sage publications.
- Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed, a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152
- Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24.
- Harden, A., & Gough, D. (2012). Quality and relevance appraisal. In D. Gough, S. Oliver, & J. Thomas (Eds.), An introduction to systematic reviews, (pp. 153-178). London: Sage.
- Harrer, S. (2023). Attention is not all you need: The complicated case of ethically using large language models in healthcare and medicine. eBioMedicine, 90, 104512.
- Hatzipanagos, S., & Code, J. (2016). Open badges in online learning environments: Peer feedback and formative assessment as an
 engagement intervention for promoting agency. *Journal of Educational Multimedia and Hypermedia*, 25(2), 127-142.
- Heflin, H., Shewmaker, J., & Nguyen, J. (2017). Impact of mobile technology on student attitudes, engagement, and learning. Computers & Education, 107, 91-99.
- Heider, K. (2009). Information literacy: The missing link in early childhood education. Early Childhood Education Journal, 36(6), 513-518.
- Henderson, M., Selwyn, N., & Aston, R. (2017). What works and why? Student perceptions of 'useful' digital technology in university teaching and learning. Studies in Higher Education, 42(8), 1567-1579.
- Hennessy, S., Girvan, C., Mavrikis, M., Price, S., & Winters, N. (2018). Editorial. British Journal of Educational Technology, 49(1), 3-5.
- Henrie, C. R., Halverson, L. R., & Graham, C. R. (2015). Measuring student engagement in technology-mediated learning: A review. Computers & Education, 90, 36-53.
- Hess, J., & Singer, E. (1995). The role of respondent debriefing questions in questionnaire development. In: Proceedings of the Annual Conference of American Association for Public Opinion Research (pp 1075-1080). Fort Lauderdale, FL: AAPOR.
- Hew, K. F., & Cheung, W. S. (2013). Use of web 2.0 technologies in K-12 and higher education: The search for evidence-based practice. Educational Research Review, 9, 47-64.
- Hew, K. F., Huang, W., Du, J., & Jia, C. (2023). Using chatbots to support student goal setting and social presence in fully online activities: Learner engagement and perceptions. *Journal of Computing in Higher Education*, 35, 40-68.
- Hew, K. F., Lan, M., Tang, Y., Jia, C., & Lo, C. K. (2019). Where is the "theory" within the field of educational technology research? British Journal of Educational Technology, 50(3), 956-971.
- Howard, S. K., Ma, J., & Yang, J. (2016). Student rules: Exploring patterns of students' computer-efficacy and engagement with digital technologies in learning. Computers & Education, 101, 29-42.
- Hromalik, C. D., & Koszalka, T. A. (2018). Self-regulation of the use of digital resources in an online language learning course improves learning outcomes. *Distance Education*, 39(4), 528-547.

- Hu, S., & Kuh, G. D. (2002). Being (dis)engaged in educationally purposeful activities: The influences of student and institutional characteristics. Research in Higher Education, 43(5), 555-575.
- Hunsu, N. J., Adesope, O., & Bayly, D. J. (2016). A meta-analysis of the effects of audience response systems (clicker-based technologies) on cognition and affect. Computers & Education, 94, 102-119.
- Ikpeze, C. (2007). Small group collaboration in peer-led electronic discourse: An analysis of group dynamics and interactions involving Preservice and Inservice teachers. *Journal of Technology and Teacher Education*, 15(3), 383-407.
- Ivala, E., & Gachago, D. (2012). Social media for enhancing student engagement: The use of Facebook and blogs at a university of technology. South African Journal of Higher Education, 26(1), 152-167.
- Jacobs, G. E. (2006). Fast times and digital literacy: Participation roles and portfolio construction within instant messaging. *Journal of Literacy Research*, 38(2), 171-196.
- Järvelä, S., Järvenoja, H., Malmberg, J., Isohätälä, J., & Sobocinski, M. (2016). How do types of interaction and phases of self-regulated learning set a stage for collaborative engagement? *Learning and Instruction*, 43, 39-51.
- Jeffrey, L., Hegarty, B., Kelly, O., Penman, M., Coburn, D., & McDonald, J. (2011). Developing digital information literacy in higher education: Obstacles and supports. *Journal of Information Technology Education: Research*, 10(1), 383-413.
- Jeffrey, T. (2020). Understanding college student perceptions of artificial intelligence. Systemics, Cybernetics and Informatics, 18(2), 8-13.
- Jha, N., Shankar, P. R., Al-Betar, M. A., Mukhia, R., Hada, K., & Palaian, S. (2022). Undergraduate medical students' and interns' knowledge and perception of artificial intelligence in medicine. Advances in Medical Education and Practice, 13, 927-937.
- Johnston, B., & Webber, S. (2003). Information literacy in higher education: A review and case study. Studies in Higher Education, 28(3), 335-352.
- Joksimović, S., Poquet, O., Kovanović, V., Dowell, N., Mills, C., Gašević, D., ... Brooks, C. (2018). How do we model learning at scale? A systematic review of research on MOOCs. Review of Educational Research, 88(1), 43-86.
- Jones, B. D. (2020). Motivating and engaging students using educational technologies. In M. J. Bishop, E. Boling, J. Elen, & V. Svihla (Eds.), Handbook of research in educational communications and technology (pp. 9-35). Springer.
- Jou, M., Lin, Y.-T., & Tsai, H.-C. (2016). Mobile APP for motivation to learning: An engineering case. Interactive Learning Environments, 24(8), 2048-2057.
- Junco, R. (2012). The relationship between frequency of Facebook use, participation in Facebook activities, and student engagement. Computers & Education, 58(1), 162-171.
- Júnior, C. A. H., & Finardi, K. R. (2018). Internationalization and virtual collaboration: Insights from COIL experiences. Ensino Em Foco, 1(2), 19-33.
- Kahn, P. (2014). Theorising student engagement in higher education. British Educational Research Journal, 40(6), 1005-1018.
- Kahu, E. R. (2013). Framing student engagement in higher education. Studies in Higher Education, 38(5), 758-773.
- Kahu, E. R., & Nelson, K. (2018). Student engagement in the educational interface: Understanding the mechanisms of student success. Higher Education Research and Development, 37(1), 58-71.
- Kaliisa, R., & Picard, M. (2017). A systematic review on mobile learning in higher education: The African perspective. The Turkish Online Journal of Educational Technology, 16(1).
- Kanniainen, L., Kiili, C., Tolvanen, A., Aro, M., & Leppänen, P. H. (2019). Literacy skills and online research and comprehension: Struggling readers face difficulties online. Reading and Writing, 32(9), 2201-2222.
- Kara, H. (2017). Research and evaluation for busy students and practitioners: A time-saving guide, (2nd ed.). Bristol: Policy Press.
- Karabulut-Ilgu, A., Jaramillo Cherrez, N., & Jahren, C. T. (2018). A systematic review of research on the flipped learning method in
 engineering education: Flipped learning in engineering education. British Journal of Educational Technology, 49(3), 398-411.
- Kay, R. H., & LeSage, A. (2009). Examining the benefits and challenges of using audience response systems: A review of the literature. *Computers & Education*, 53(3), 819-827.
- Keefe, E. B., & Copeland, S. R. (2011). What is literacy? The power of a definition. Research & Practice for Persons with Severe Disabilities, 36(3-4), 92-99.
- Keiller, L., & Inglis-Jassiem, G. (2015). A lesson in listening: Is the student voice heard in the rush to incorporate technology into health professions education? African Journal of Health Professions Education, 7(1), 47-50.
- Kirkwood, A. (2009). E-learning: You don't always get what you hope for. Technology, Pedagogy and Education, 18(2), 107-121.
- Kitamura, F. C. (2023). ChatGPT is shaping the future of medical writing but still requires human judgment. Radiology, 307(2), e230171.
- Kline, R. B. (2011). Principles and practice of structural equation modelling. New York: Guilford Press.
- Koehler, M. J., Mishra, P., & Cain, W. (2013). What is technological pedagogical content knowledge (TPACK)? Journal of Education, 193(3), 13-19.
- Koehler, M., & Mishra, P. (2005). What happens when teachers design educational technology? The development of technological pedagogical content knowledge. *Journal of Educational Computing Research*, 32(2), 131-152.
- Kong, J., Deng, S., & Zhang, Y. (2019). Research on influencing factors of college students' intention of online health information behaviour based on social cognitive theory. *Journal of Physics: Conference Series, 1213*(2), 022017.
- Krause, K.-L., & Coates, H. (2008). Students' engagement in first-year university. Assessment & Evaluation in Higher Education, 33(5), 493-505.
- Kucuk, S., Aydemir, M., Yildirim, G., Arpacik, O., & Goktas, Y. (2013). Educational technology research trends in Turkey from 1990 to 2011. Computers & Education, 68, 42-50.
- Kuh, G. D. (2009). What student affairs professionals need to know about student engagement. Journal of College Student Development, 50(6), 683-706.
- Kuh, G. D., Cruce, T. M., Shoup, R., Kinzie, J., & Gonyea, R. M. (2008). Unmasking the effects of student engagement on first-year college grades and persistence. The Journal of Higher Education, 79(5), 540-563.
- Kuh, G. D., J. Kinzie, J. A. Buckley, B. K. Bridges, & J. C. Hayek. (2006). What matters to student success: A review of the literature. Washington, DC: National Postsecondary Education Cooperative.
- Kumar, A. H. S. (2023). Analysis of ChatGPT tool to assess the potential of its utility for academic writing in biomedical domain. BEMS Reports, 9(1), 24-30.

- Kupper, L. L., & Hafner, K. B. (1989). How appropriate are popular sample size formulas? The American Statistician, 43(2), 101-105.
- Kurbanoglu, S. S., Akkoyunlu, B., & Umay, A. (2006). Developing the information literacy self-efficacy scale. *Journal of Documentation*, 62(6), 730-743.
- Lai, J. W. M., & Bower, M. (2019). How is the use of technology in education evaluated? A systematic review. Computers & Education, 133, 27-42.
- Landauer, T. K. (2003). Automatic essay assessment. Assessment in Education: Principles, Policy & Practice, 10(3), 295-308.
- Laurillard, D. (2009). The pedagogical challenges to collaborative technologies. International Journal of Computer-Supported Collaborative Learning, 4(1), 5-20.
- Lawson, M. A., & Lawson, H. A. (2013). New conceptual frameworks for student engagement research, policy, and practice. Review
 of Educational Research, 83(3), 432-479.
- Lazar, I. M., Panisoara, G., & Panisoara, I. O. (2020). Digital technology adoption scale in the blended learning context in higher education: Development, validation and testing of a specific tool. PLoS One, 15(7), e0235957.
- Lea, M. R., & Jones, S. (2011). Digital literacies in higher education: Exploring textual and technological practice. Studies in Higher Education, 36(4), 377-393.
- Leach, L., & Zepke, N. (2011). Engaging students in learning: A review of a conceptual organiser. Higher Education Research and Development, 30(2), 193-204.
- Leahy, D., & Dolan, D. (2010). Digital literacy: A vital competence for 2010? In IFIP international conference on key competencies in the knowledge society (pp. 210-221). Berlin, Heidelberg: Springer.
- Leask, B. (2013). Internationalizing the curriculum in the disciplines—Imagining new possibilities. *Journal of Studies in International Education*, 17(2), 103-118.
- Lee, Y.-F., Hwang, G.-J., & Chen, P.-Y. (2022). Impacts of an AI-based chabot on college students' after-class review, academic performance, self-efficacy, learning attitude, and motivation. Educational Technology Research and Development, 70, 1843-1865.
- Lewin, C., & McNicol, S. (2015). Supporting the development of 21st century skills through ICT. In T. Brinda, N. Reynolds, R. Romeike, & A. Schwill (Eds.), KEYCIT 2014: Key competencies in informatics and ICT (pp. 98-181). Potsdam, Germany: Universitätsverlag Potsdam.
- Li, J., van der Spek, E. D., Feijs, L., Wang, F., & Hu, J. (2017). Augmented reality games for learning: A literature review. In N. Streitz, & P. Markopoulos (Eds.), Lecture Notes in Computer Science. Distributed, Ambient and Pervasive Interactions, (vol. 10291, pp. 612-626). Cham: Springer International Publishing.
- Lim, C. (2004). Engaging learners in online learning environments. *TechTrends*, 48(4), 16-23
- Lindberg, O., & Olofsson, A. (2012). Sustaining a professional dimension in the use of educational technology in European higher educational practices. Educational Technology, 52(2), 34-38.
- Liu, Q., Geertshuis, S., & Grainger, R. (2020). Understanding academics' adoption of learning technologies: A systematic review. Computers & Education, 151, 103857.
- Lloyd, A. (2006). Information literacy landscapes: An emerging picture. Journal of Documentation, 62(5), 570-583.
- Lodge, J. M., Kennedy, G., & Lockyer, L. (2019). Digital learning environments, the science of learning and the relationship between
 the teacher and the learner. In A. Carroll, R. Cunnington, & A. Nugent (Eds.), Learning under the lens: Applying findings from the science of
 learning to the classroom. Abingdon: CRC Press.
- Lowenthal, J. N. (2010). Using mobile learning: Determinates impacting behavioural intention. The American Journal of Distance Education, 24(4), 195-206.
- Lu, K., Yang, H. H., Shi, Y., & Wang, X. (2021). Examining the key influencing factors on college students' higher-order thinking skills in the smart classroom environment. *International Journal of Educational Technology in Higher Education*, 18, 1.
- Lubowitz, J. H. (2023). ChatGPT, an artificial intelligence chatbot, is impacting medical literature. Arthroscopy, 39(5), 1121-1122.
- Lundin, M., Bergviken Rensfeldt, A., Hillman, T., Lantz-Andersson, A., & Peterson, L. (2018). Higher education dominance and siloed knowledge: A systematic review of flipped classroom research. *International Journal of Educational Technology in Higher Education*, 15(1), 1.
- Ma, J., Han, X., Yang, J., & Cheng, J. (2015). Examining the necessary condition for engagement in an online learning environment based on learning analytics approach: The role of the instructor. The Internet and Higher Education, 24, 26-34.
- Maerten, A.-S., & Soydaner, D. (2023). From paintbrush to pixel: A review of deep neural networks in AI-generated art.
- Mahatmya, D., Lohman, B. J., Matjasko, J. L., & Farb, A. F. (2012). Engagement across developmental periods. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement, (pp. 45-63). Boston: Springer US.
- Major, L., Warwick, P., Rasmussen, I., Ludvigsen, S., & Cook, V. (2018). Classroom dialogue and digital technologies: A scoping review. Education and Information Technologies, 23(5), 1995-2028.
- Mansouri, A. S., & Piki, A. (2016). An exploration into the impact of blogs on students' learning: Case studies in postgraduate business education. *Innovations in Education and Teaching International*, 53(3), 260-273.
- Martin, A. (2006). A European framework for digital literacy. Nordic Journal of Digital Literacy, 1(02), 151-161.
- Martin, A. J. (2012). Motivation and engagement: Conceptual, operational, and empirical clarity. In S. L. Christenson, A. L. Reschly,
 & C. Wylie (Eds.), Handbook of research on student engagement, (pp. 303-311). Boston: Springer US.
- McCutcheon, K., Lohan, M., Traynor, M., & Martin, D. (2015). A systematic review evaluating the impact of online or blended learning vs. face-to-face learning of clinical skills in undergraduate nurse education. *Journal of Advanced Nursing*, 71(2), 255-270.
- Mercader, C. (2020). Explanatory model of barriers to integration of digital technologies in higher education institutions. Education and Information Technology, 25, 5133-5147.
- Mertala, P. (2020). Paradoxes of participation in the digitalization of education: A narrative account. Learning, Media and Technology, 45(2), 179-192.
- Meyers, E. M., Erickson, I., & Small, R. V. (2013). Digital literacy and informal learning environments: An introduction. Learning, Media and Technology, 38(4), 355-367.

- Miake-Lye, I. M., Hempel, S., Shanman, R., & Shekelle, P. G. (2016). What is an evidence map? A systematic review of published evidence maps and their definitions, methods, and products. Systematic Reviews, 5, 28.
- Miles, M. B., & Huberman, A. M. (1994). An expanded sourcebook qualitative data analysis (2nd ed.). Sage Publications.
- Mizumoto, A., & Eguchi, M. (2023). Exploring the potential of using an AI language model for automoated essay scoring.
- Mohammadyari, S., & Singh, H. (2015). Understanding the effect of e-learning on individual performance: The role of digital literacy. Computers & Education, 82, 11-25.
- Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ (Clinical Research Ed.), 339, b2535.
- Mokmin, N. A. M., & Ibrahim, N. A. (2021). The evaluation of chatbot as a tool for health literacy education among undergraduate students. Education and Information Technologies, 26, 6033-6049.
- Nassuora, A. B. (2012). Students' acceptance of mobile learning for higher education in Saudi Arabia. American Academic & Scholarly Research Journal, 4(2), 24-30.
- Nelson Laird, T. F., & Kuh, G. D. (2005). Student experiences with information technology and their relationship to other aspects of student engagement. Research in Higher Education, 46(2), 211-233.
- Ng, W. (2012). Can we teach digital natives digital literacy? Computers & Education, 59(3), 1065-1078.
- Nguyen, L., Barton, S. M., & Nguyen, L. T. (2015). iPads in higher education-hype and hope. British Journal of Educational Technology, 46(1), 190-203.
- Nicholas, D., Watkinson, A., Jamali, H. R., Herman, E., Tenopir, C., Volentine, R., ... Levine, K. (2015). Peer review: Still king in the digital age. Learned Publishing, 28(1), 15-21.
- Nikou, S. A., & Economides, A. A. (2018). Mobile-based assessment: A literature review of publications in major referred journals from 2009 to 2018. Computers & Education, 125, 101-119.
- Nikou, S., Brännback, M., & Widén, G. (2018). The impact of multidimensionality of literacy on the use of digital technology: Digital immigrants and digital natives. In international conference on well-being in the information society (pp. 117-133). Cham: Springer.
- Nikou, S., Brännback, M., & Widén, G. (2019). The impact of digitalization on literacy: Digital immigrants vs. digital natives. In proceedings of the 27th European conference on information systems (ECIS), Stockholm & Uppsala, Sweden, June 8-14.
- Nikou, S., Molinari, A., & Widén, G. (2020). The interplay between literacy and digital technology: A fuzzy-set qualitative comparative analysis approach. *Information Research*, 25(4), paper isic2016.
- Norris, L., & Coutas, P. (2014). Cinderella's coach or just another pumpkin? Information communication technologies and the
 continuing marginalisation of languages in Australian schools. Australian Review of Applied Linguistics, 37(1), 43-61
- O'Flaherty, J., & Phillips, C. (2015). The use of flipped classrooms in higher education: A scoping review. The Internet and Higher Education, 25, 85-95.
- O'Gorman, E., Salmon, N., & Murphy, C.-A. (2016). Schools as sanctuaries: A systematic review of contextual factors which
 contribute to student retention in alternative education. *International Journal of Inclusive Education*, 20(5), 536-551.
- O'Mara-Eves, A., Brunton, G., McDaid, D., Kavanagh, J., Oliver, S., & Thomas, J. (2014). Techniques for identifying cross-disciplinary and 'hard-to-detect' evidence for systematic review. Research Synthesis Methods, 5(1), 50-59.
- Oliver, B., & de St Jorre, Trina, J. (2018). Graduate attributes for 2020 and beyond: recommendations for Australian higher education providers. Higher Education Research and Development, 1-16.
- Park, C. J., Yi, P. H., & Siegel, E. L. (2020). Medical student perspectives on the impact of artificial intelligence on the practice of medicine. Current Problems in Diagnostic Radiology, 50(5), 614-619.
- Pastore, S., & Andrade, H. L. (2019). Teacher assessment literacy: A three-dimensional model. Teaching and Teacher Education, 84, 128-138.
- Payne, L. (2017). Student engagement: Three models for its investigation. Journal of Further and Higher Education, 3(2), 1-17.
- Pekrun, R., & Linnenbrink-Garcia, L. (2012). Academic emotions and student engagement. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement, (pp. 259-282). Boston: Springer US.
- Peres, R., Shreier, M., Schweidel, D., & Sorescu, A. (2023). On ChatGPT and beyond: How generative artificial intelligence may affect research, teaching, and practice. *International Journal of Research in Marketing*.
- Popenici, S. (2013). Towards a new vision for university governance, pedagogies and student engagement. In E. Dunne, & D. Owen (Eds.), The student engagement handbook: Practice in higher education, (1st ed., pp. 23-42). Bingley: Emerald.
- Price, L., Richardson, J. T., & Jelfs, A. (2007). Face-to-face versus online tutoring support in distance education. Studies in Higher Education, 32(1), 1-20.
- Quin, D. (2017). Longitudinal and contextual associations between teacher-student relationships and student engagement. Review of Educational Research, 87(2), 345-387.
- Rabah, J. (2015). Benefits and challenges of information and communication technologies (ICT) integration in Québec English schools. Turkish Online Journal of Educational Technology-TOJET, 14(2), 24-31.
- Rachmadtullah, R., Marianus Subandowo, R., Humaira, M. A., Aliyyah, R. R., Samsudin, A., & Nurtanto, M. (2020). Use of blended learning with Moodle: Study effectiveness in elementary school teacher education students during the COVID-19 pandemic. *International Journal of Advanced Science and Technology*, 29(7), 3272-3277.
- Rashid, T., & Asghar, H. M. (2016). Technology use, self-directed learning, student engagement and academic performance: Examining the interrelations. Computers in Human Behavior, 63, 604-612.
- Redecker, C. (2017). European framework for the digital competence of educators. Luxembourg: Office of the European Union.
- Redmond, P., Heffernan, A., Abawi, L., Brown, A., & Henderson, R. (2018). An online engagement framework for higher education. Online Learning, 22(1).
- Reeve, J. (2012). A self-determination theory perspective on student engagement. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement, (pp. 149-172). Boston: Springer US.
- Reeve, J., & Tseng, C.-M. (2011). Agency as a fourth aspect of students' engagement during learning activities. Contemporary Educational Psychology, 36(4), 257-267.

- Reschly, A. L., & Christenson, S. L. (2012). Jingle, jangle, and conceptual haziness: Evolution and future directions of the engagement construct. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement, (pp. 3-19). Boston: Springer US
- Ritzhaupt, A. D., Cheng, L., Luo, W., & Hohlfeld, T. N. (2020). The digital divide in formal educational settings: The past, present, and future relevance. In M. J. Bishop, E. Boling, J. Elen, & V. Svihla (Eds.), Handbook of research in educational communications and technology (pp. 483-504). Springer.
- Rosman, T., Peter, J., Mayer, A. K., & Krampen, G. (2018). Conceptions of scientific knowledge influence learning of academic skills: Epistemic beliefs and the efficacy of information literacy instruction. Studies in Higher Education, 43(1), 96-113.
- Salaber, J. (2014). Facilitating student engagement and collaboration in a large postgraduate course using wiki-based activities. The International Journal of Management Education, 12(2), 115-126.
- Saldaña, J. (2003). Longitudinal qualitative research: Analyzing change through time. AltaMira Press.
- Sancho-Gil, J. M., Rivera-Vargas, P., & Miño-Puigcercós, R. (2020). Moving beyond the predictable failure of Ed-Tech initiatives. Learning, Media and Technology, 45(1), 61-75.
- Santos, A. I., & Serpa, S. (2017). The importance of promoting digital literacy in higher education. *International Journal of Social Science Studies*, 5(6), 90-93.
- Sarrab, M., Al-Shihi, H., & Rehman, O. M. H. (2013). Exploring major challenges and benefits of m-learning adoption. Current Journal
 of Applied Science and Technology, 3(4), 826-839.
- Schindler, L. A., Burkholder, G. J., Morad, O. A., & Marsh, C. (2017). Computer-based technology and student engagement: A critical review of the literature. *International Journal of Educational Technology in Higher Education*, 14(1), 253.
- Selwyn, N. (2015). Minding our language: Why education and technology is full of bullshit ... and what might be done about it. Learning, Media and Technology, 41(3), 437-443.
- Selwyn, N. (2016). Digital downsides: Exploring university students' negative engagements with digital technology. Teaching in Higher Education, 21(8), 1006-1021.
- Selwyn, N. (2016). Is technology good for education? Wiley.
- Shields, R., & Chugh, R. (2018). Preparing Australian high school learners with 21st century skills. Paper presented at the 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) (pp. 1101-1106). New York, NY: IEEE.
- Shonfeld, M., & Ronen, I. (2015). Online learning for students from diverse backgrounds: Learning disability students, excellent students and average students. IAFOR Journal of Education, 3(2), 13-29.
- Silber-Varod, V., Eshet-Alkalai, Y., & Geri, N. (2019). Tracing research trends of 21st-century learning skills. British Journal of Educational Technology, 50(6), 3099-3118.
- Sit, C., Srinivasan, R., Amlani, A., Muthuswamy, K., Azam, A., Monzon, L., & Poon, D. S. (2020). Attitudes and perceptions of UK
 medical students towards artificial intelligence and radiology: A mutilcentre survey. *Insights into Imaging*.
- Skinner, E., & Pitzer, J. R. (2012). Developmental dynamics of student engagement, coping, and everyday resilience. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement, (pp. 21-44). Boston: Springer US.
- Skulmowski, A., Rey, G., & D. (2020). COVID-19 as an accelerator for digitalization at a German university: Establishing hybrid campuses in times of crisis. Human Behaviour and Emerging Technologies, 2(3), 212-216.
- Smidt, E., Bunk, J., McGrory, B., Li, R., & Gatenby, T. (2014). Student attitudes about distance education: Focusing on context and
 effective practices. *IAFOR Journal of Education*, 2(1), 40-64.
- Smith, R. (2006). Peer review: A flawed process at the heart of science and journals. Journal of the Royal Society of Medicine, 99, 178-182.
- Smith, T., & Lambert, R. (2014). A systematic review investigating the use of twitter and Facebook in university-based healthcare education. Health Education, 114(5), 347-366.
- Solomonides, I. (2013). A relational and multidimensional model of student engagement. In E. Dunne, & D. Owen (Eds.), The student engagement handbook: Practice in higher education, (1st ed., pp. 43-58). Bingley: Emerald.
- Sosa Neira, E. A., Salinas, J., & de Benito, B. (2017). Emerging technologies (ETs) in education: A systematic review of the literature
 published between 2006 and 2016. *International Journal of Emerging Technologies in Learning (IJET)*, 12(05), 128.
- Sullivan, M., & Longnecker, N. (2014). Class blogs as a teaching tool to promote writing and student interaction. Australasian Journal
 of Educational Technology, 30(4), 390-401.
- Sumakul, D. T. Y. G., Hamied, F. A., & Sukyadi, D. (2020). Students' perceptions of the use of AI in a writing class. Advances in Social Science, Education and Humanities Research, 624. 52-57.
- Sun, J. C.-Y., & Rueda, R. (2012). Situational interest, computer self-efficacy and self-regulation: Their impact on student engagement
 in distance education. British Journal of Educational Technology, 43(2), 191-204.
- Sun, P. C., Tsai, R. J., Finger, G., Chen, Y. Y., & Yeh, D. (2008). What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction. Computers & Education, 50(4), 1183-1202.
- Szabo, Z., & Schwartz, J. (2011). Learning methods for teacher education: The use of online discussions to improve critical thinking. Technology, Pedagogy and Education, 20(1), 79-94.
- Tamim, R. M., Bernard, R. M., Borokhovski, E., Abrami, P. C., & Schmid, R. F. (2011). What forty years of research says about the impact of technology on learning: A second-order meta-analysis and validation study. *Review of Educational Research*, 81(1), 4-28.
- Tang, C. M., & Chaw, L. Y. (2016). Digital literacy: A prerequisite for effective learning in a blended learning environment? Electronic Journal of E-learning, 14(1), 54-65.
- Teo, T. S. H., Srivastava, S. C., & Jiang, L. (2008). Trust and electronic government success: An empirical study. *Journal of Management Information Systems*, 25(3), 99-132.
- Terblanche, N., Molyn, J., Williams, K., & Maritz, J. (2022). Performance matters: Students' perceptions of artificial intelligence coach adoption factors. *Coaching an International Journal of Theory Research and Practice, 16*(1), 100-114.
- Turnbull, D., Chugh, R., & Luck, J. (2019). Learning management systems: An overview. In A. Tatnall (Ed.), Encyclopedia of education
 and information technologies. Cham: Springer.

- van Dis, E. A. M., Bollen, J., Zuidema, W., van Rooij, R., & Bockting, C. L. (2023). ChatGPT: Five priorities for research. Nature, 614, 224-226.
- Van Laar, E., Van Deursen, A. J., Van Dijk, J. A., & De Haan, J. (2017). The relation between 21st -century skills and digital skills: A
 systematic literature review. Computers in Human Behaviour, 72, 577-588.
- Van Oostveen, R., & Desjardins, F. (2013). Developing and implementing a new online bachelor program: Formal adoption of videoconferencing and social networking as a step towards m-Learning. In M. B. Nunes & M. McPherson (Eds.), Proceedings of the IADIS International Conference on e-Learning (pp. 223-230). Prague, Czech Republic, Jul 23-26, 2013: International Association for Development of the Information Society.
- Van Rooij, E., Brouwer, J., Fokkens-Bruinsma, M., Jansen, E., Donche, V., & Noyens, D. (2017). A systematic review of factors related to first-year students' success in Dutch and Flemish higher education. *Pedagogische Studien*, 94(5), 360-405.
- Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
- Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory
 of acceptance and use of technology. MIS Ouarterly, 36(1), 157-178.
- von Loh, S. G., & Henkel, M. (2014). Information and media literacy in kindergarten. In European conference on information literacy (pp. 253-262).
 Cham: Springer.
- Vural, O. F. (2013). The impact of a question-embedded video-based learning tool on E-learning. Educational Sciences: Theory and Practice, 13(2), 1315-1323.
- Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge: Harvard University Press.
- Wanner, T., & Palmer, E. (2015). Personalising learning: Exploring student and teacher perceptions about flexible learning and assessment in a flipped university course. *Computers & Education*, 88, 354-369.
- Warschauer, M. (2004). Technology and social inclusion: Rethinking the digital divide. MIT Press.
- Webb, L., Clough, J., O'Reilly, D., Wilmott, D., & Witham, G. (2017). The utility and impact of information communication technology (ICT) for pre-registration nurse education: A narrative synthesis systematic review. Nurse Education Today, 48, 160-171.
- Wekullo, C. S. (2019). International undergraduate student engagement: Implications for higher education administrators. Journal of International Students, 9(1), 320-337.
- Wimpenny, K., & Savin-Baden, M. (2013). Alienation, agency and authenticity: A synthesis of the literature on student engagement. *Teaching in Higher Education*, 18(3), 311-326.
- Winstone, N. E., Nash, R. A., Parker, M., & Rowntree, J. (2017). Supporting learners' agentic engagement with feedback: A systematic review and a taxonomy of recipience processes. Educational Psychologist, 52(1), 17-37.
- Yildiz Durak, H. (2023). Conversational agent-based guidance: Examining the effect of chatbot usage frequency and satisfaction on visual design self-efficacy, engagement, satisfaction, and learner autonomy. Education and Information Technologies, 28, 471-488.
- Yüzbaşioğlu, E. (2021). Attitudes and perceptions of dental students towards artificial intelligence. Journal of Dental Education, 85(1), 60-68.
- Záhorec, J., Hašková, A., & Munk, M. (2019). Teachers' professional digital literacy skills and their upgrade. European Journal of Contemporary Education, 8(2), 378-393.
- Zepke, N. (2014). Student engagement research in higher education: Questioning an academic orthodoxy. Teaching in Higher Education, 19(6), 697-708.
- Zepke, N. (2018). Student engagement in neo-liberal times: What is missing? Higher Education Research and Development, 37(2), 433-446.
- Zepke, N., & Leach, L. (2010). Improving student engagement: Ten proposals for action. Active Learning in Higher Education, 11(3), 167-177.
- Zhang, A., & Aasheim, C. (2011). Academic success factors: An IT student perspective. Journal of Information Technology Education: Research, 10, 309-331.
- Zheng, Y., Wang, J., Doll, W., Deng, X., & Williams, M. (2018). The impact of organisational support, technical support, and self-efficacy on faculty perceived benefits of using learning management system. Behaviour & Information Technology, 37(4), 311-319.

© 2025, Author(s).

This open access publication is distributed under Creative Commons Attribution (CC BY-NC-SA 4.0) License.

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material.

However.

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

Non-Commercial — You may not use the material for commercial purposes.

Share Alike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license.

You shall not apply legal terms or technological measures that legally restrict others from doing anything the license permits. There are no additional restrictions.